【題目】已知在 中,角
的對邊分別是
,且有
.
(1)求 ;
(2)若 ,求
面積的最大值.
【答案】
(1)解:∵在△ABC中,0<C<π,∴sinC≠0
已知等式利用正弦定理化簡得:2cosC(sinAcosB+sinBcosA)=sinC ,
整理得:2cosCsin(A+B)=sinC ,
即2cosCsin(π-(A+B))=sinC
2cosCsinC=sinC
∴cosC= ,
C∈(0,π).
∴C=
(2)解:由余弦定理可得:9=c2=a2+b2-2abcosC≥2ab-ab=ab ,
可得ab≤9,
S= absinC≤
當且僅當a=b=3時取等號
∴△ABC面積的最大值
【解析】(1)先利用正弦定理將給出的等式化簡,再利用二角和公式合并化簡即可求出C。
(2)結合余弦定理和(1)中的結論求出ab的范圍,再利用三角形的面積公式S=即可求出面積最大值。
【考點精析】根據題目的已知條件,利用余弦定理的定義的相關知識可以得到問題的答案,需要掌握余弦定理:;
;
.
科目:高中數學 來源: 題型:
【題目】已知點 為坐標原點,
是橢圓
上的兩個動點,滿足直線
與直線
關于直線
對稱.
(1)證明直線 的斜率為定值,并求出這個定值;
(2)求 的面積最大時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解學生身高情況,某校以10%的比例對全校700名學生按性別進行抽樣檢查,測得身高情況的統計圖如圖所示:
(1)估計該校男生的人數;
(2)估計該校學生身高在170~185cm的概率;
(3)從樣本中身高在180~190cm的男生中任選2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
的左、右焦點分別為
,上頂點為
,過點
與
垂直的直線交
軸負半軸于點
,且
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、
、
三點的圓恰好與直線
:
相切,求橢圓
的方程;
(III)在(Ⅱ)的條件下,過右焦點作斜率為
的直線
與橢圓
交于
、
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍,如果不存在,說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com