精英家教網 > 高中數學 > 題目詳情

【題目】在某小學體育素質達標運動會上,對10名男生和10名女生在一分鐘跳繩的次數進行統計,得到如下所示莖葉圖:
(1)已知男生組中數據的中位數為125,女生組數據的平均數為124,求x,y的值;
(2)現從這20名學生中任意抽取一名男生和一名女生對他們進行訓練,記一分鐘內跳繩次數不低于115且不超過125的學生被選上的人數為X,求X的分布列和數學期望E(X).

【答案】
(1)解:∵120+ =125,解得x=3.

=124,解得y=4


(2)解:因為一分鐘內跳繩次數不低于115且不超過125的學生中,男生只有1人,女生只有4人,

所以男生被選上的概率為 ,女生被選上的概率為 ,X可能取值為0,1,2,

∴P(X=0)= = ,P(X=1)= = ,P(X=2)= =

∴X的分布列為:

X

0

1

2

P

∴數學期望E(X)=0× +1× +2× =


【解析】(1)利用120+ =125,解得x.利用平均數的計算公式可得y.(2)因為一分鐘內跳繩次數不低于115且不超過125的學生中,男生只有1人,女生只有4人.所以男生被選上的概率為 ,女生被選上的概率為 ,X可能取值為0,1,2,利用相互獨立與互斥事件的概率計算公式即可得出.
【考點精析】掌握莖葉圖是解答本題的根本,需要知道莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]
在直角坐標系xOy中,曲線C1的參數方程為 (α為參數),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校夏令營有3名男同學和3名女同學,其年級情況如下表,現從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同).

一年級

二年級

三年級

男同學

女同學

(1)用表中字母列舉出所有可能的結果;

(2)設為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件發生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列是以為公差的等差數列,數列的前項和為,滿足 ,則不可能是(  )

A. -1 B. 0

C. 2 D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且cosC=
(1)求B;
(2)設CM是角C的平分線,且CM=1,b=6,求cos∠BCM.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本題滿分12分甲、乙兩位學生參加數學競賽培訓現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數據;

2現要從中選派一人參加數學競賽,從統計學的角度在平均數、方差或標準差中選兩個分析,你認為選派哪位學生參加合適?請說明理由

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地小吃“全羊湯”2008年被中國中醫學會營養膳食協會評為“中華名吃”,2010年12月被納入市級非物質文化遺產名錄,打造地方名片.當初向各地作廣告推廣,對銷售收益產生額積極的影響.某年度在若干地區各投入4萬元廣告費用后,將各地該年度的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.

(1)根據頻率分布直方圖,計算圖中各小長方形的寬度;

(2)根據頻率分布直方圖,估計投入4萬元廣告費用之后,銷售收益的平均值;(以各組區間中點值代表改組的取值)

(3)又在某一地區測的另外一些數據,并整理的得到下表:

廣告投入(單位:萬元)

1

2

3

4

5

銷售收益(單位:百萬元)

2

3

2

7

請將(2)的結果填入空白欄,表中的數據之間存在線性相關關系.計算,并預測年度廣告約投入多少萬元時,年銷售收益達到千萬元?(結果精確達到0.1)

參考公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形是直角梯形,平面,

(1)求直線與平面所成角的余弦;

(2)求平面和平面所成角的余弦.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣mx(m∈R).
(1)當m=0時,求函數f(x)的零點個數;
(2)當m≥0時,求證:函數f(x)有且只有一個極值點;
(3)當b>a>0時,總有 >1成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视