精英家教網 > 高中數學 > 題目詳情

【題目】[選修4-4:坐標系與參數方程]
在直角坐標系xOy中,曲線C1的參數方程為 (α為參數),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.

【答案】
(1)

解:曲線C1的參數方程為 (α為參數),

移項后兩邊平方可得 +y2=cos2α+sin2α=1,

即有橢圓C1 +y2=1;

曲線C2的極坐標方程為ρsin(θ+ )=2 ,

即有ρ( sinθ+ cosθ)=2 ,

由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,

即有C2的直角坐標方程為直線x+y﹣4=0


(2)

解:由題意可得當直線x+y﹣4=0的平行線與橢圓相切時,

|PQ|取得最值.

設與直線x+y﹣4=0平行的直線方程為x+y+t=0,

聯立 可得4x2+6tx+3t2﹣3=0,

由直線與橢圓相切,可得△=36t2﹣16(3t2﹣3)=0,

解得t=±2,

顯然t=﹣2時,|PQ|取得最小值,

即有|PQ|= = ,

此時4x2﹣12x+9=0,解得x= ,

即為P( ,


【解析】(1)運用兩邊平方和同角的平方關系,即可得到C1的普通方程,運用x=ρcosθ,y=ρsinθ,以及兩角和的正弦公式,化簡可得C2的直角坐標方程;(2)由題意可得當直線x+y﹣4=0的平行線與橢圓相切時,|PQ|取得最值.設與直線x+y﹣4=0平行的直線方程為x+y+t=0,代入橢圓方程,運用判別式為0,求得t,再由平行線的距離公式,可得|PQ|的最小值,解方程可得P的直角坐標.;本題考查參數方程和普通方程的互化、極坐標和直角坐標的互化,同時考查直線與橢圓的位置關系,主要是相切,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】 (a>b>0)如圖,已知橢圓C:的左、右焦點分別為F1、F2 , 離心率為 ,點A是橢圓上任一點,△AF1F2的周長為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(﹣4,0)任作一動直線l交橢圓C于M,N兩點,記 ,若在線段MN上取一點R,使得 ,則當直線l轉動時,點R在某一定直線上運動,求該定直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,若存在,滿足,則稱的一個“友好”三角形.

(ⅰ)在滿足下述條件的三角形中,存在“友好”三角形的是__________;(請寫出符合要求的條件的序號).

,; ,;

,

(ⅱ)若存在“友好”三角形,且,在另外兩個角的度數分別為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極值.

(1)求常數k的值;

(2)求函數的單調區間與極值;

(3)設,且, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四邊形ABCD中,=(6,1),=(x,y),=(-2,-3),且.

(1)xy的關系式;

(2),求x、y的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.

1)設分別表示甲、乙抽到的牌的數字,寫出甲乙二人抽到的牌的所有情況;

2)若甲抽到紅桃3,則乙抽出的牌的牌面數字比3大的概率是多少?

3)甲乙約定:若甲抽到的牌的牌面數字比乙大,則甲勝,反之,則乙勝,你認為此游戲是否公平,說明你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校乒乓球隊有3名男同學A,B,C和3名女同學X,Y,Z,其年級情況如下表:

一年級

二年級

三年級

男同學

A

B

C

女同學

X

Y

Z

現從這6名同學中隨機選出2人參加乒乓球比賽每人被選到的可能性相同).

1用表中字母列舉出所有可能的結果

2設M為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件M發生的概率

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某小學體育素質達標運動會上,對10名男生和10名女生在一分鐘跳繩的次數進行統計,得到如下所示莖葉圖:
(1)已知男生組中數據的中位數為125,女生組數據的平均數為124,求x,y的值;
(2)現從這20名學生中任意抽取一名男生和一名女生對他們進行訓練,記一分鐘內跳繩次數不低于115且不超過125的學生被選上的人數為X,求X的分布列和數學期望E(X).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视