精英家教網 > 高中數學 > 題目詳情
己知各項均為正數的數列{an}滿足an+12+an+1an-2an2=0(n∈N*),且a3+2是a2,a4的等差中項.
(1)求數列{an}的通項公式an
(2)若bn=anlog
1
2
an,Sn=b1+b2+…+bn,求Sn+n•2n+1>50成立的正整數n的最小值.
(Ⅰ)∵an+12-an+1an-2an2=0,∴(an+1+an)(an+1-2an)=0,
∵數列{an}的各項均為正數,
∴an+1+an>0,
∴an+1-2an=0,
即an+1=2an,所以數列{an}是以2為公比的等比數列.
∵a3+2是a2,a4的等差中項,
∴a2+a4=2a3+4,
∴2a1+8a1=8a1+4,
∴a1=2,
∴數列{an}的通項公式an=2n
(Ⅱ)由(Ⅰ)及bn=anlog
1
2
an
得,bn=-n•2n
∵Sn=b1+b2++bn,
∴Sn=-2-2•22-3•23-4•24--n•2n
∴2Sn=-22-2•23-3•24-4•25--(n-1)•2n-n•2n+1
①-②得,Sn=2+22+23+24+25++2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1=(1-n)•2n+1-2
,
要使Sn+n•2n+1>50成立,只需2n+1-2>50成立,即2n+1>52,
∴使Sn+n•2n+1>50成立的正整數n的最小值為5.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)等差數列的前項和為
⑴求數列的通項與前項和;⑵設,求證:數列中任意不同的三項都不可能成為等比數列.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

一個首項為正數的等差數列中,前人項的和等于前他他項的和,當這個數列的前n項和最大時,n等于( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

數列{an}中,Sn是前n項的和,且Sn=2an-3n
(1)求an
(2){an}中是否存在三項,使它們構成等差數列?若存在,求出這三項,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設等差數列前n項和為Sn,S10=100,S20=400,則S30等于( 。
A.800B.900C.1000D.1100

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知等差數列{an}中,a4=1,a8=8,則a12的值為( 。
A.30B.64C.31D.15

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設3a=4,3b=12,3c=36,那么數列a、b、c是( 。
A.是等比數列但不是等差數列
B.是等差數列但不是等比數列
C.既是等比數列又是等差數列
D.既不是等比數列又不是等差數列

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列{an}中,若a4+a6+a8+a10+a12=120,則a8的值為( 。
A.20B.24C.36D.72

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列的前n項和為,且 =6,=4, 則公差d等于(     )
A.1B.C.- 2D.3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视