【題目】已知關于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實數m的最大值為M.
(1)求M的值;
(2)正數a,b,c滿足a+2b+c=M,求證: +
≥1.
【答案】
(1)解:由絕對值不等式得|x﹣2|﹣|x+3|≥≤|x﹣2﹣(x+3)|=5,
若不等式|x﹣2|﹣|x+3|≥|m+1|有解,
則滿足|m+1|≤5,解得﹣6≤m≤4.
∴M=4.
(2)解:由(1)知正數a,b,c滿足足a+2b+c=4,即 [(a+b)+(b+c)]=1
∴ +
=
[(a+b)+(b+c)](
+
)=
(1+1+
+
)≥
(2+2
)≥
×4=1,
當且僅當 =
即a+b=b+c=2,即a=c,a+b=2時,取等號.
∴ +
≥1成立
【解析】(1)根據絕對值不等式的性質進行轉化求解.(2)利用1的代換,結合基本不等式的性質進行證明即可.
【考點精析】認真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號).
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.
(1)證明:BD⊥平面DEC;
(2)若二面角A﹣ED﹣B的大小為30°,求EC的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2, .
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求二面角A﹣EC﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=3sin(4x+ )圖象上所有點的橫坐標伸長到原來的2倍,再向右平移
個單位長度,得到函數y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是( )
A.x=
B.x=
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2x+alnx(a∈R).
(1)討論函數f(x)的單調性;
(2)當t≥1時,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市公租房的房源位于A,B,C,D四個片區,設每位申請人只申請其中一個片區的房源,且申請其中任一個片區的房源是等可能的,在該市的甲、乙、丙三位申請人中:
(1)求恰有1人申請A片區房源的概率;
(2)用x表示選擇A片區的人數,求x的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來共享單車在我國主要城市發展迅速.目前市場上有多種類型的共享單車,有關部門對其中三種共享單車方式(M方式、Y方式、F方式)進行統計(統計對象年齡在15~55歲),相關數據如表1,表2所示. 三種共享單車方式人群年齡比例(表1)
方式 | M | Y | F |
[15,25) | 25% | 20% | 35% |
[25,35) | 50% | 55% | 25% |
[35,45) | 20% | 20% | 20% |
[45,55] | 5% | a% | 20% |
不同性別選擇共享單車種類情況統計(表2)
性別 | 男 | 女 |
1 | 20% | 50% |
2 | 35% | 40% |
3 | 45% | 10% |
(Ⅰ)根據表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統計對象中隨機選取男女各一人,試估計男性使用共享單車種類數大于女性使用共享單車種類數的概率;
(Ⅲ)現有一個年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問此結論是否正確?(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等腰三角形ABC,E為底邊BC的中點,沿AE折疊,如圖,將C折到點P的位置,使P﹣AE﹣C為120°,設點P在面ABE上的射影為H.
(1)證明:點H為EB的中點;
(2)若 ,求直線BE與平面ABP所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓C的方程;
(2)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為 ,求△AOB面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com