【題目】近年來共享單車在我國主要城市發展迅速.目前市場上有多種類型的共享單車,有關部門對其中三種共享單車方式(M方式、Y方式、F方式)進行統計(統計對象年齡在15~55歲),相關數據如表1,表2所示. 三種共享單車方式人群年齡比例(表1)
方式 | M | Y | F |
[15,25) | 25% | 20% | 35% |
[25,35) | 50% | 55% | 25% |
[35,45) | 20% | 20% | 20% |
[45,55] | 5% | a% | 20% |
不同性別選擇共享單車種類情況統計(表2)
性別 | 男 | 女 |
1 | 20% | 50% |
2 | 35% | 40% |
3 | 45% | 10% |
(Ⅰ)根據表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統計對象中隨機選取男女各一人,試估計男性使用共享單車種類數大于女性使用共享單車種類數的概率;
(Ⅲ)現有一個年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問此結論是否正確?(只需寫出結論)
【答案】解:(Ⅰ)由題意,a%=1﹣0.2﹣0.55﹣0.2=0.05,∴a=5,∴使用Y共享單車方式人群的平均年齡= +
+
+
=31;
(Ⅱ)記男性使用共享單車種類數大于女性使用共享單車種類數為事件M,則
男性使用2種,女性使用1種的概率=0.35×0.5=0.175,
男性使用3種,女性使用1種的概率=0.45×0.5=0.225,
男性使用3種,女性使用2種的概率=0.45×0.4=0.18,
∴P(M)=0.175+0.225+0.18=0.58;
(Ⅲ)不正確.
【解析】(Ⅰ)由題意,a%=1﹣0.2﹣0.55﹣0.2=0.05,求出a,利用組中值估算出使用Y共享單車方式人群的平均年齡;(Ⅱ)若從統計對象中隨機選取男女各一人,分類討論,即可估計男性使用共享單車種類數大于女性使用共享單車種類數的概率;(Ⅲ)用Y方式出行與使用F方式出行沒有關系.
科目:高中數學 來源: 題型:
【題目】已知F1 , F2為橢圓 的左、右焦點,F2在以
為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實數m的最大值為M.
(1)求M的值;
(2)正數a,b,c滿足a+2b+c=M,求證: +
≥1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】G為△ADE的重心,點P為△DEG內部(含邊界)上任一點,B,C均為AD,AE上的三等分點(靠近點A), =α
+β
(α,β∈R),則α+
β的范圍是( )
A.[1,2]
B.[1, ]
C.[ ,2]
D.[ ,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知由正數組成的等比數列{an}中,公比q="2," a1·a2·a3·…·a30=245, 則a1·a4·a7·…·a28= ( )
A.25
B.210
C.215
D.220
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com