【題目】以下四個命題中是假命題的是
A. “昆蟲都是6條腿,竹節蟲是昆蟲,所以竹節蟲有6條腿”此推理屬于演繹推理.
B. “在平面中,對于三條不同的直線,
,
,若
,
則
,將此結論放到空間中也成立” 此推理屬于合情推理.
C. “”是“函數
存在極值”的必要不充分條件.
D. 若,則
的最小值為
.
科目:高中數學 來源: 題型:
【題目】已知直線與橢圓
相交于
兩點,與
軸,
軸分別相交于點
和點
,且
,點
是點
關于
軸的對稱點,
的延長線交橢圓于點
,過點
分別做
軸的垂線,垂足分別為
.
(1) 若橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點
在橢圓
上,求橢圓
的方程;
(2)當時,若點
平分線段
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形和
均為平行四邊形,點
在平面
內的射影恰好為點
,以
為直徑的圓經過點
,
,
的中點為
,
的中點為
,且
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求幾何體的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統計數據:
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數據求年需求量與年份之間的回歸方程=
x+
;
(2)利用(1)中所求出的直線方程預測該地2018年的糧食需求量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題是
的必要而不充分條件;
設命題實數
滿足方程
表示雙曲線.
(1)若“”為真命題,求實數
的取值范圍;
(2)若“”為假命題,“
”為真命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓
的左、右焦點,
為坐標原點,點
在橢圓上,線段
與
軸的交點
滿足
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)圓是以
為直徑的圓,一直線
與圓
相切,并與橢圓交于不同的兩點
、
,當
,且滿足
時,求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了監控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態下生產的零件的尺寸服從正態分布.
(1)假設生產狀態正常,記X表示一天內抽取的16個零件中其尺寸在
之外的零件數,求;
(2)一天內抽檢零件中,如果出現了尺寸在之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.
下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得,
,其中
為抽取的第
個零件的尺寸,
.
用樣本平均數作為
的估計值
,用樣本標準差
作為
的估計值
,利用估計值判斷是否需對當天的生產過程進行檢查?剔除
之外的數據,用剩下的數據估計
和
(精確到0.01).
附:若隨機變量服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)用定義證明函數在
上是增函數;
(2)探究是否存在實數,使得函數
為奇函數?若存在,求出
的值;若不存在,請說明理由;
(3)在(2)的條件下,解不等式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“共享單車”的出現,為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的
城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據此樣本完成此列聯表,并據此樣本分析是否有
的把握認為城市擁堵與認可共享單車有關:
合計 | |||
認可 | |||
不認可 | |||
合計 |
附:參考數據:(參考公式:)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com