【題目】已知f(x)=|ax﹣4|﹣|ax+8|,a∈R
(Ⅰ)當a=2時,解不等式f(x)<2;
(Ⅱ)若f(x)≤k恒成立,求k的取值范圍.
【答案】解:(Ⅰ)當a=2時,
f(x)=2(|x﹣2|﹣|x+4|)=
當x<﹣4時,不等式不成立;
當﹣4≤x≤2時,由﹣4x﹣4<2,得﹣ <x≤2;
當x>2時,不等式必成立.
綜上,不等式f(x)<2的解集為{x|x>﹣ }.
(Ⅱ)因為f(x)=|ax﹣4|﹣|ax+8|≤|(ax﹣4)﹣(ax+8)|=12,
當且僅當ax≤﹣8時取等號.
所以f(x)的最大值為12.
故k的取值范圍是[12,+∞)
【解析】(I)當a=2時,f(x)=2(|x﹣2|﹣|x+4|),再對x的值進行分類討論轉化成一次不等式,由此求得不等式的解集.(II)f(x)≤k恒成立,等價于k≥f(x)max,由此求得實數k的取值范圍.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】直線l1 , l2分別是函數f(x)=sinx,x∈[0,π]圖象上點P1 , P2處的切線,l1 , l2垂直相交于點P,且l1 , l2分別與y軸相交于點A,B,則△PAB的面積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集為R,函數f(x)= 的定義域為集合A,集合B={x|x(x﹣1)≥2}
(1)求A∩B;
(2)若C={x|1﹣m<x≤m},C(RB),求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數,據此估計,該運動員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40
B.0.30
C.0.35
D.0.25
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為
(1)求頻率分布圖中 的值,并估計該企業的職工對該部門評分不低于80的概率;
(2)從評分在 的受訪職工中,隨機抽取2人,求此2人評分都在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】調查了某地若干戶家庭的年收入x(單位:萬元)和年飲食支出y(單位:萬元),調查顯示年收入x與年飲食支出y具有線性相關關系,并由調查數據得到y對x的回歸直線方程: =0. 254x+0. 321. 由回歸直線方程可知,家庭年收入每增加1萬元,年飲食支出平均增加萬元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位最近組織了一次健身活動,活動分為登山組和游泳組,且每個職工至多參加其中一組.在參加活動的職工中,青年人占42. 5%,中年人占47. 5%,老年人占10%. 登山組的職工占參加活動總人數的 ,且該組中,青年人占50%,中年人占40%,老年人占10%. 為了了解各組不同年齡層次的職工對本次活動的滿意程度,現用分層抽樣方法從參加活動的全體職工中抽取一個容量為200的樣本.試確定:
(1)游泳組中,青年人、中年人、老年人分別所占的比例;
(2)游泳組中,青年人、中年人、老年人分別應抽取的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3﹣3ax+b.
(1)若曲線y=f(x)在點(2,f(x))處與直線y=8相切,求a,b的值.
(2)在(1)的條件下求函數f(x)的單調區間與極值點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com