精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)
,且,
(1)求的最小值及相應 x的值;
(2)若,求x的取值范圍.

(1)f (log2x)有最小值,x=(2)0<x<1

解析試題分析:(1)∵f (x)=x2-x+b,∴f (log2a)= (log2a)2-log2a+b=b,∴log2a=1∴a=2.  ……2分
又∵log2f(a)=2,f(a)=4.∴a2-a+b=4,∴b=2.∴f (x)=x2-x+2               ……4分
∴f (log2x)= (log2x)2-log2x+2= (log2x-)2+,
∴當log2x=,即x=時,f (log2x)有最小值.                           ……6分
(2)由題意知                                      ……8分
                                              ……10分
  ∴  0<x<1                                     ……12分
考點:函數求解析式及解不等式
點評:求函數解析式主要用到的是待定系數法,整道題目在求解過程中多處涉及到了對數運算需結合對數函數性質考慮,整體來看難度不大,需分析求解時認真細心

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

計算:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數.
(1)判斷函數在定義域上的單調性;
(2)利用題(1)的結論,,求使不等式上恒成立時的實數的取值范圍?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(10分)為了預防流感,某學校對教室用藥熏消毒法進行消毒。已知藥物釋放過程中,室內每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數關系式為,如圖所示。

(1)請寫出從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數關系式;
(2)據測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室。那么,從藥物釋放開始,至少需要經過多少小時后,學生才能回到教室。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)已知函數為偶函數,且在上為增函數.
(1)求的值,并確定的解析式;
(2)若,是否存在實數使在區間上的最大值為2,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知函數,其中
(Ⅰ)求上的單調區間;
(Ⅱ)求為自然對數的底數)上的最大值;
(III)對任意給定的正實數,曲線上是否存在兩點,使得是以原點為直角頂點的直角三角形,且此三角形斜邊中點在軸上?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分15分)
為了保護環境,發展低碳經濟,某單位在國家科研部門的支持下,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產品價值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數的圖象過點(1,13),圖像關于直線對稱。
(1)求的解析式。
(2)已知,,
① 若函數的零點有三個,求實數的取值范圍;
②求函數在[,2]上的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分分)
若函數在定義域內某區間上是增函數,而上是減函數,
則稱上是“弱增函數”
(1)請分別判斷=,是否是“弱增函數”,
并簡要說明理由;
(2)證明函數(是常數且)在上是“弱增函數”.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视