【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,∠PAC=∠BAC=60°,AC=4,AP=3,AB=2.
(1)求三棱錐P-ABC的體積;
(2)求點C到平面PAB距離.
【答案】(1)3; (2).
【解析】
(1)過P作PH⊥AC交AC于一點H,可證PH⊥平面ABC,計算PH和△ABC的面積,代入體積公式計算棱錐的體積;
(2)依次計算AH,BH,PB,利用余弦定理計算∠PAB,得出△PAB的面積,根據VP-ABC=VC-PAB列方程計算C到平面PAB的距離.
(1)過P作PH⊥AC交AC于一點H,
∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PH平面PAC,
∴PH⊥平面ABC.
在△PAC中,∠PAC=60°,PA=3,則PH=PAsin∠PAC=,AH=PAcos∠PAC=
.
∵△ABC的面積S△ABC==
=2
.
∴四面體P-ABC體積VP-ABC==
=3.
(2)連接BH.
在△ABH中,由余弦定理可得:BH2=AH2+AB2-2AHABcos∠BAC=+4-2×
=
,
∴PB2=PH2+BH2=+
=10,∴PB=
.
在△PAB中,由余弦定理得:cos∠PAB==
=
,∴sin∠PAB=
.
∴△PAB的面積S△PAB==
=
.
設C點到平面PAB距離為h,則VC-PAB=S△PABh=3,
即=3.解得h=
.
∴C點到平面PAB距離為.
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩廠的產品質量,采用分層抽樣的方法從甲、乙兩廠生產的產品中分別抽取14件和5件,測量產品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產品的測量數據:
編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
已知甲廠生產的產品共有98件.
(1)求乙廠生產的產品數量;
(2)當產品中的微量元素x,y滿足x≥175,且y≥75時,該產品為優等品,用上述樣本數據估計乙廠生產的優等品的數量;
(3)從乙廠抽出的上述5件產品中,隨機抽取2件,求抽取的2件產品中優等品數的分布列及其均值(即數學期望).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體,過對角線
作平面
交棱
于點
,交棱
于點
,下列不正確的是( )
A.平面分正方體所得兩部分的體積相等;
B.四邊形一定是平行四邊形;
C.平面與平面
不可能垂直;
D.四邊形的面積有最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓W:(a>b>0)的離心率
,其右頂點A(2,0),直線l過點B(1,0)且與橢圓交于C,D兩點.
(Ⅰ)求橢圓W的標準方程;
(Ⅱ)判斷點A與以CD為直徑的圓的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改革開放以來,中國經濟飛速發展,科學技術突飛猛進。高鐵、核電、橋梁、激光、通信、人工智能、航空航天、移動支付、量子通訊、特高壓輸電等許多技術都領先于世界。厲害了,我的國!把“厲害了我的國”這六個字隨機地排成一排,其中“厲”、“害”這兩個字必須相鄰(可以交換順序),“了”、“的”這兩個助詞不能相鄰,則不同排法的種數為( )。
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某海域的東西方向上分別有A,B兩個觀測點(如圖),它們相距海里.現有一艘輪船在D點發出求救信號,經探測得知D點位于A點北偏東45°,B點北偏西60°,這時,位于B點南偏西60°且與B點相距
海里的C點有一救援船,其航行速度為30海里/小時.
(1)求B點到D點的距離BD;
(2)若命令C處的救援船立即前往D點營救,求該救援船到達D點需要的時間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com