【題目】在直角坐標系xOy中,曲線C的參數方程為 (α為參數)
(1)求曲線C的普通方程;
(2)在以O為極點,x正半軸為極軸的極坐標系中,直線l方程為 ρsin(
﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點,求|AB|.
科目:高中數學 來源: 題型:
【題目】由于研究性學習的需要,中學生李華持續收集了手機“微信運動”團隊中特定20名成員每天行走的步數,其中某一天的數據記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個數據按組距1000進行分組,并統計整理,繪制了如下尚不完整的統計圖表:
步數分組統計表(設步數為x)
組別 | 步數分組 | 頻數 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫出m,n的值,若該“微信運動”團隊共有120人,請估計該團隊中一天行走步數不少于7500步的人數;
(Ⅱ)記C組步數數據的平均數與方差分別為v1 , ,E組步數數據的平均數與方差分別為v2 ,
,試分別比較v1與v2 ,
與
的大。唬ㄖ恍鑼懗鼋Y論)
(Ⅲ)從上述A,E兩個組別的步數數據中任取2個數據,求這2個數據步數差的絕對值大于3000步的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均不相等的等差數列{an}滿足a1=1,且a1 , a2 , a5成等比數列.
(1)求{an}的通項公式;
(2)若bn=(﹣1)n (n∈N*),求數列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}中,a2=6,a3+a6=27.
(1)求數列{an}的通項公式;
(2)記數列{an}的前n項和為Sn , 且Tn= ,若對于一切正整數n,總有Tn≤m成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某三棱錐的正視圖、側視圖和俯視圖分別是直角三角形、等腰三角形和等邊三角形,若該三棱錐的頂點都在同一球面上,則該球的表面積為( )
A.27π
B.48π
C.64π
D.81π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+ ﹣1,a∈R.
(1)若關于x的不等式f(x)≤ x﹣1在[1,+∞)上恒成立,求a的取值范圍;
(2)設函數g(x)= ,若g(x)在[1,e2]上存在極值,求a的取值范圍,并判斷極值的正負.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,若函數g(x)=f(x)﹣t有三個不同的零點x1 , x2 , x3 , 且x1<x2<x3 , 則﹣
+
+
的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|≥m對一切實數x均成立,求m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com