精英家教網 > 高中數學 > 題目詳情

【題目】某部門在上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統計其乘車等待時間(指乘客從進站口到乘上車的時間,單位:分鐘)將統計數據按,,,…,分組,制成頻率分布直方圖如圖所示:

1)求a的值;

2)記A表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”試估計A的概率;

3)假設同組中的每個數據用該組區間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,求的值,并直接寫出的大小關系.

【答案】120.53,

【解析】

1)根據小長方形的面積和為列方程,解方程求得的值.

2)根據頻率分布直方圖,計算出乘客在甲站等待時間少于20分鐘的頻率,由此估計A的概率.

3)利用頻率分布直方圖計算出平均數.根據圖象判斷出.

1)因為,

所以.

2)由題意知,該乘客在甲站等待時間少于20分鐘的頻率為,故的估計值為0.5.

3.

由直方圖知.(因為乙圖中較高的小長方形位于等待時間較長的范圍)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某班50名學生期中考試數學成績的頻率分布直方圖如圖所示,其中成績分組區間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].從樣本成績不低于80分的學生中隨機選取2人,記這2人成績在90分以上(含90分)的人數為ξ,則ξ的數學期望為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面,四邊形是菱形,點在線段.

1)證明:平面平面;

2)若,二面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《周髀算經》是我國古老的天文學和數學著作,其書中記載:一年有二十四個節氣,每個節氣晷長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測影子的長度),夏至、小暑、大暑、立秋、處暑、白露、秋分、寒露、霜降是連續的九個節氣,其晷長依次成等差數列,經記錄測算,這九個節氣的所有晷長之和為49.5尺,夏至、大暑、處暑三個節氣晷長之和為10.5尺,則立秋的晷長為(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中e為自然對數的底數.

1)若函數的極小值為,求的值;

2)若,證明:當時,成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)函數內有兩個不同零點,求的取值范圍;

2)在第(1)問的條件下判斷當時,曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過拋物線y2=4x的焦點的直線l與拋物線交于AB兩點,設點M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線C1a0,b0)的焦點分別為F1(﹣5,0),F25,0),PC上一點,PF1PF2,tanPF1F2,則C的方程為(

A.x21B.y21

C.1D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,國家為了鼓勵高校畢業生自主創業,出臺了許多優惠政策,以創業帶動就業.某高校畢業生小李自主創業從事海鮮的批發銷售,他每天以每箱300元的價格購入基圍蝦,然后以每箱500元的價格出售,如果當天購入的基圍蝦賣不完,剩余的就作垃圾處理.為了對自己的經營狀況有更清晰的把握,他記錄了150天基圍蝦的日銷售量(單位:箱),制成如圖所示的頻數分布條形圖.

1)若小李一天購進12箱基圍蝦.

①求當天的利潤(單位:元)關于當天的銷售量(單位:箱,)的函數解析式;

②以這150天記錄的日銷售量的頻率作為概率,求當天的利潤不低于1900元的概率;

2)以上述樣本數據作為決策的依據,他計劃今后每天購進基圍蝦的箱數相同,并在進貨量為11箱,12箱中選擇其一,試幫他確定進貨的方案,以使其所獲的日平均利潤最大.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视