【題目】已知命題p:存在實數m,使方程x2+mx+1=0有兩個不等的負根;命題q:存在實數m,使方程4x2+4(m-2)x+1=0無實根.若“p或q”為真,“p且q”為假,求m的取值范圍.
【答案】m≥3或1<m≤2.
【解析】
試題分析:利用一元二次方程的實數根與判別式的關系、不等式的解法可得命題P與Q的m的取值范圍,再由“P或Q”為真,“P且Q”為假,可得P與Q必然一個為真一個為假.即可得出
試題解析:存在實數m,使方程x2+mx+1=0有兩個不等的負根,則,解得m>2,即m>2時,p真.
存在實數m,使方程4x2+4(m-2)x+1=0無實根,
則Δ=16(m-2)2-16=16(m2-4m+3)<0,
解得1<m<3,即1<m<3時,q真.
因“p或q”為真,所以命題p、q至少有一個為真,
又“p且q”為假,所以命題p、q至少有一個為假,
因此,命題p、q應為一真一假,即命題p為真,命題q為假或命題p為假,命題q為真.
∴或
,解得m≥3或1<m≤2.
所以m的取值范圍是m≥3或1<m≤2
科目:高中數學 來源: 題型:
【題目】函數在它的某一個周期內的單調減區間是
.
(1)求的解析式;
(2)將的圖象先向右平移
個單位,再將圖象上所有點的橫坐標變為原來的
倍(縱坐標不變),所得到的圖象對應的函數記為
,若對于任意的
,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市組織500名志愿者參加敬老活動,為方便安排任務將所有志愿者按年齡(單位:歲)分組,得到的頻率分布表如下.現要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人擔任聯系人.
年齡(歲) | 頻率 | |
第1組 | 0.1 | |
第2組 | 0.1 | |
第3組 | 0.4 | |
第4組 | 0.3 | |
第5組 | 0.1 |
(1)應分別在第1,2,3組中抽取志愿者多少人?
(2)從這6人中隨機抽取2人擔任本次活動的宣傳員,求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓
的左頂點,經過左焦點
的直線
與橢圓
交于
,
兩點,求
與
的面積之差的絕對值的最大值.(
為坐標原點)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數的圖象向左平移
個單位長度,再向上平移1個單位長度,得到函數
的圖象,則函數
具有性質__________.(填入所有正確性質的序號)
①最大值為,圖象關于直線
對稱;
②圖象關于軸對稱;
③最小正周期為;
④圖象關于點對稱;
⑤在上單調遞減
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數據,
,
,…,
是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設這100個數據的中位數為
,平均數為
,方差為
,如果再加上馬云2016年10月份的收入
(約100億元),則相對于
、
、
,這101個月收入數據( )
A.平均數可能不變,中位數可能不變,方差可能不變
B.平均數大大增大,中位數可能不變,方差也不變
C.平均數大大增大,中位數一定變大,方差可能不變
D.平均數大大增大,中位數可能不變,方差變大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】春節期間某超市搞促銷活動,當顧客購買商品的金額達到一定數量后可以參加抽獎活動,活動規則為:從裝有個黑球,
個紅球,
個白球的箱子中(除顏色外,球完全相同)摸球.
(Ⅰ)當顧客購買金額超過元而不超過
元時,可從箱子中一次性摸出
個小球,每摸出一個黑球獎勵
元的現金,每摸出一個紅球獎勵
元的現金,每摸出一個白球獎勵
元的現金,求獎金數不少于
元的概率;
(Ⅱ)當購買金額超過元時,可從箱子中摸兩次,每次摸出
個小球后,放回再摸一次,每摸出一個黑球和白球一樣獎勵
元的現金,每摸出一個紅球獎勵
元的現金,求獎金數小于
元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com