【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓
的左頂點,經過左焦點
的直線
與橢圓
交于
,
兩點,求
與
的面積之差的絕對值的最大值.(
為坐標原點)
科目:高中數學 來源: 題型:
【題目】已知關于某設備的使用年限與所支出的維修費用
(萬元),有如下統計資料:
設對
呈線性相關關系,試求:
(1)線性回歸方程的回歸系數
;
(2)估計使用年限為10年時,維修費用是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列說法:①球的半徑是球面上任意一點與球心的連線;②球的直徑是球面上任意兩點的連線;③用一個平面截一個球面,得到的是一個圓;④球常用表示球心的字母表示.
其中說法正確的是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,1000張獎券為一個開獎單位,設特等獎1個,一等獎10個,二等獎50個.設1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎券的中獎概率;
(3)1張獎券不中特等獎且不中一等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:存在實數m,使方程x2+mx+1=0有兩個不等的負根;命題q:存在實數m,使方程4x2+4(m-2)x+1=0無實根.若“p或q”為真,“p且q”為假,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時不超過
千米.已知汽車每小時的運輸成本(單位:元)由可變部分和固定部分組成:固定部分為
元,可變部分與速度
(單位;
)的平方成正比,且比例系數為
.
(1)求汽車全程的運輸成本(單位:元)關于速度
(單位;
)的函數解析式;
(2)為了全程的運輸成本最小,汽車應該以多大的速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為
且過點
,過定點
的動直線與該橢圓相交于
兩點.
(1)若線段中點的橫坐標是
,求直線
的方程;
(2)在軸上是否存在點
,使
為常數?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com