【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.
【答案】
(1)解:∵PA⊥平面ABCD
∴PA⊥BD
∵PC⊥平面BDE
∴PC⊥BD,又PA∩PC=P
∴BD⊥平面PAC
(2)解:設AC與BD交點為O,連OE
∵PC⊥平面BDE
∴PC⊥平面BOE
∴PC⊥BE
∴∠BEO為二面角B﹣PC﹣A的平面角
∵BD⊥平面PAC
∴BD⊥AC
∴四邊形ABCD為正方形,又PA=1,AD=2,可得BD=AC=2 ,PC=3
∴OC=
在△PAC∽△OEC中,
又BD⊥OE,
∴
∴二面角B﹣PC﹣A的平面角的正切值為3
【解析】(1)由題設條件及圖知,可先由線面垂直的性質證出PA⊥BD與PC⊥BD,再由線面垂直的判定定理證明線面垂直即可;(2)由圖可令AC與BD的交點為O,連接OE,證明出∠BEO為二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.
【考點精析】根據題目的已知條件,利用直線與平面垂直的判定的相關知識可以得到問題的答案,需要掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想.
科目:高中數學 來源: 題型:
【題目】今年的國慶假期是實施免收小型客車高速通行費后的第一個重大節假日,有一個群名為“天狼星”的自駕游車隊.該車隊是由31輛車身長都約為5m(以5m計算)的同一車型組成的,行程中經過一個長為2725m的隧道(通過該隧道的車速不能超過25m/s),勻
速通過該隧道,設車隊的速度為xm/s,根據安全和車流的需要,當0<x≤12時,相鄰兩車之間保持20m的距離;當12<x≤25時,相鄰兩車之間保持( )m的距離.自第1輛車車頭進入隧道至第31輛車車尾離開隧道所用的時間為y(s).
(1)將y表示為x的函數;
(2)求該車隊通過隧道時間y的最小值及此時車隊的速度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c都是正數,
(1)若a+c=1,試比較a3+a2c+ab2+b2c與a2b+abc的大;
(2)若a2+b2+c2=1,求證: ﹣
≥3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x= 時,四邊形MENF的面積最;
③四邊形MENF周長l=f(x),x∈0,1]是單調函數;
④四棱錐C′﹣MENF的體積v=h(x)為常函數;
以上命題中真命題的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種多面體玩具共有12個面,在其十二個面上分別標有數字1,2,3,…,12.若該玩具質地均勻,則拋擲該玩具后,任何一個數字所在的面朝上的概率均相等.
為檢驗某批玩具是否合格,制定檢驗標準為:多次拋擲該玩具,并記錄朝上的面上標記的數字,若各數字出現的頻率的極差不超過0.05.則認為該玩具合格.
(1)對某批玩具中隨機抽取20件進行檢驗,將每個玩具各面數字出現頻率的極差繪制成莖葉圖(如圖所示),試估計這批玩具的合格率;
(2)現有該種類玩具一個,將其拋擲100次,并記錄朝上的一面標記的數字,得到如下數據:
朝上面的數字 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
次數 | 9 | 7 | 8 | 6 | 10 | 9 | 9 | 8 | 10 | 9 | 7 | 8 |
1)試判定該玩具是否合格;
2)將該玩具拋擲一次,記事件:向上的面標記數字是完全平方數(能寫成整數的平方形式的數,如
,9為完全平方數);事件
:向上的面標記的數字不超過4.試根據上表中的數據,完成以下列聯表(其中
表示
的對立事件),并回答在犯錯誤的概率不超過0.01的前提下,能否認為事件
與事件
有關.
合計 | |||
合計 | 100 |
(參考公式及數據: ,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義實數a,b間的計算法則如下a△b= .
(1)計算2△(3△1);
(2)對0<x<z<y的任意實數x,y,z,判斷x△(y△z)與(x△y)△z的大小,并說明理由;
(3)寫出函數y=(1△x)+(2△x),x∈R的解析式,作出該函數的圖象,并寫出該函數單調遞增區間和值域(只需要寫出結果).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com