【題目】端午節(每年農歷五月初五),是中國傳統節日,有吃粽子的習俗.某超市在端午節這一天,每售出kg粽子獲利潤
元,未售出的粽子每
kg虧損
元.根據歷史資料,得到銷售情況與市場需求量的頻率分布表,如下表所示.該超市為今年的端午節預購進了
kg粽子.以
(單位:kg,
)表示今年的市場需求量,
(單位:元)表示今年的利潤.
市場需求量(kg) | |||||
頻率 | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
(1)將表示為
的函數;
(2)根據頻率分布表估計今年利潤不少于
元的概率.
科目:高中數學 來源: 題型:
【題目】2014年,中央和國務院辦公廳印發《關于引導農村土地經營權有序流轉發展農業適度規模經營的意見》,要求大力發展土地流轉和適度規模經營.某種糧大戶2015年開始承包了一地區的大規模水田種植水稻,購買了一種水稻收割機若干臺,這種水稻收割機隨著使用年限的增加,每年的養護費也相應增加,這批水稻收割機自購買使用之日起,5年以來平均每臺水稻收割機的養護費用數據統計如下:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
養護費用 | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)從這5年中隨機抽取2年,求平均每臺水稻收割機每年的養護費用至少有1年多于2萬元的概率;
(2)求關于
的線性回歸方程;
(3)若該水稻收割機的購買價格是每臺16萬元,由(2)中的回歸方程,從每臺水稻收割機的年平均費用角度,你認為一臺該水稻收割機是使用滿5年就淘汰,還是繼續使用到滿8年再淘汰?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,平面
平面
,
為
的中點,
,
,
.
(1)求證:平面平面
;
(2)若異面直線與
所成角為
,求
的長;
(3)在(2)的條件下,求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數f(x)的單調區間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在發生公共衛生事件期間,有專業機構認為該事件在一段時間內沒有發生大規模群體感染的標志為“連續10天,每天新增疑似病例不超過7人”.過去10日,A、B、C、D四地新增疑似病例數據信息如下:
A地:中位數為2,極差為5; B地:總體平均數為2,眾數為2;
C地:總體平均數為1,總體方差大于0; D地:總體平均數為2,總體方差為3.
則以上四地中,一定符合沒有發生大規模群體感染標志的是_______(填A、B、C、D)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點為圓
:
上一動點,過點
分別作
軸,
軸的垂線,垂足分別為
,
,連接
延長至點
,使得
,點
的軌跡記為曲線
.
(1)求曲線的方程;
(2)若點,
分別位于
軸與
軸的正半軸上,直線
與曲線
相交于
,
兩點,且
,試問在曲線
上是否存在點
,使得四邊形
為平行四邊形,若存在,求出直線
方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】二手車經銷商小王對其所經營的A型號二手汽車的使用年數x與銷售價格y(單位:萬元/輛)進行整理,得到如下數據:
如圖是z關于x的折線圖:
(1)由折線圖可以看出,可以用線性回歸模型擬合z和x的關系,請用相關系數r加以說明(注:若相關系數︱r︱0.75,則認為兩個變量相關程度較強);
(2)求y關于x的回歸方程并預測某輛A型號二手車當使用年數為9年時售價約為多少?(小數點后面保留兩位有效數字);
(3)基于成本的考慮,該型號二手車的售價不得低于7118元,請根據(2)求出的回歸方程預測在收購該型號的二手車時車輛的使用年限不得超過多少年?
參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
參考數據:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com