【題目】已知等差數列{an}是有窮數列,且a1∈R,公差d=2,記{an}的所有項之和為S,若a12+S≤96,則數列{an}至多有項.
科目:高中數學 來源: 題型:
【題目】某搜索引擎廣告按照付費價格對搜索結果進行排名,點擊一次付費價格排名越靠前,被點擊的次數也可能會提高,已知某關鍵詞被甲、乙等多個公司競爭,其中甲、乙付費情況與每小時點擊量結果繪制成如下的折線圖.
(1)試根據所給數據計算每小時點擊次數的均值方差并分析兩組數據的特征;
(2)若把乙公司設置的每次點擊價格為x,每小時點擊次數為,則點
近似在一條直線附近.試根據前5次價格與每小時點擊次數的關系,求y關于x的回歸直線
.(附:回歸方程系數公式:
,
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線 x+y﹣
=0經過橢圓C:
+
=1(a>b>0)的右焦點和上頂點.
(1)求橢圓C的標準方程;
(2)過點(0,﹣2)的直線l與橢圓C交于不同的A,B兩點,若∠AOB為鈍角,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足:a4=7,a10=19,其前n項和為Sn .
(1)求數列{an}的通項公式an及Sn;
(2)若等比數列{bn}的前n項和為Tn , 且b1=2,b4=S4 , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A(2,4),直線l:x﹣2y+1=0.
(1)求過點A且平行于l的直線的方程;
(2)若點M在直線l上,且AM⊥l,求點M的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若 ,
,
為同一平面內互不共線的三個單位向量,并滿足
+
+
=
,且向量
=x
+
+(x+
)
(x∈R,x≠0,n∈N+).
(1)求 與
所成角的大;
(2)記f(x)=| |,試求f(x)的單調區間及最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正四棱錐S﹣ABCD中,O為頂點在底面上的射影,P為側棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角是( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com