精英家教網 > 高中數學 > 題目詳情

設函數(其中).
(1) 當時,求函數的單調區間;
(2) 當時,求函數上的最大值.

(1) 函數的遞減區間為,遞增區間為,;
(2)

解析試題分析:(1)由,利用導數的符號判斷函數的單調性和求單調區間;
(2)
試題解析:
解:(1)當時,
, 
,得, 
變化時,的變化如下表:














單調遞增
極大值
單調遞減
極小值
單調遞增
 
右表可知,函數的遞減區間為,遞增區間為,.
(2) ,令,得,, 令,則
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若曲線在公共點處有相同的切線,求實數的值;
(Ⅱ)若,求方程在區間內實根的個數(為自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 (R).
(1)當時,求函數的極值;
(2)若函數的圖象與軸有且只有一個交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,).
(1)若x=3是的極值點,求[1,a]上的最小值和最大值;
(2)若時是增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

近年來,某企業每年消耗電費約24萬元,為了節能減排,決定安裝一個可使用15年的太陽能供電設備接入本企業電網,安裝這種供電設備的工本費(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數約為0.5.為了保證正常用電,安裝后采用太陽能和電能互補供電的模式.假設在此模式下,安裝后該企業每年消耗的電費(單位:萬元)與安裝的這種太陽能電池板的面積(單位:平方米)之間的函數關系是為常數).記為該村安裝這種太陽能供電設備的費用與該村15年共將消耗的電費之和.
(1)試解釋的實際意義,并建立關于的函數關系式;
(2)當為多少平方米時,取得最小值?最小值是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處的切線方程為.
(1)求函數的解析式;
(2)若關于的方程恰有兩個不同的實根,求實數的值;
(3)數列滿足,,求的整數部分.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若時有極值,求實數的值和的極大值;
(2)若在定義域上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=x2+2x+kln x,其中k≠0.
(1)當k>0時,判斷f(x)在(0,+∞)上的單調性;
(2)討論f(x)的極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數,其中.
(1)當時,求的單調遞增區間;
(2)若在區間上的最小值為8,求的值.

查看答案和解析>>
久久精品免费一区二区视