精英家教網 > 高中數學 > 題目詳情

【題目】下列說法錯誤的是  

A. 棱柱的側面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉一周所得的幾何體是圓錐

【答案】B

【解析】

由棱柱的性質可判斷A;可舉正八面體可判斷B;用一個平面去截正方體,與正方體的五個面相交,可判斷C;由圓錐的定義可判斷D

由棱柱的性質可得棱柱的側面都是平行四邊形,則A正確;

所有面都是三角形的多面體不一定是三棱錐,比如正八面體的各個面都是正三角形,則B錯誤;

用一個平面去截正方體,與正方體的五個面相交,可得截面圖形是五邊形,則C正確;

由圓錐的定義可得直角三角形繞其直角邊所在直線旋轉一周所得的幾何體是圓錐,則D正確.

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系動點到定點的距離與它到直線的距離相等.

1)求動點的軌跡的方程;

2)設動直線與曲線相切于點,與直線相交于點

證明:以為直徑的圓恒過軸上某定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

)當時,求曲線處的切線方程;

)若函數在定義域內不單調,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于項數為)的有窮正整數數列,記),即中的最大值,稱數列為數列的“創新數列”.比如的“創新數列”為.

1)若數列的“創新數列”為1,2,3,4,4,寫出所有可能的數列;

2)設數列為數列的“創新數列”,滿足),求證: );

3)設數列為數列的“創新數列”,數列中的項互不相等且所有項的和等于所有項的積,求出所有的數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】節約資源和保護環境是中國的基本國策.某化工企業,積極響應國家要求,探索改良工藝,使排放的廢氣中含有的污染物數量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數量為,首次改良后所排放的廢氣中含有的污染物數量為.設改良工藝前所排放的廢氣中含有的污染物數量為,首次改良工藝后所排放的廢氣中含有的污染物數量為,則第n次改良后所排放的廢氣中的污染物數量,可由函數模型給出,其中n是指改良工藝的次數.

1)試求改良后所排放的廢氣中含有的污染物數量的函數模型;

2)依據國家環保要求,企業所排放的廢氣中含有的污染物數量不能超過,試問至少進行多少次改良工藝后才能使得該企業所排放的廢氣中含有的污染物數量達標.

(參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,點在橢圓.

求橢圓的方程;

已知為平面內的兩個定點,過點的直線與橢圓交于兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】企業需為員工繳納社會保險,繳費標準是根據職工本人上一年度月平均工資(單位:元)的繳納,

年份

2014

2015

2016

2017

2018

t

1

2

3

4

5

y

270

330

390

460

550

某企業員工甲在2014年至2018年各年中每月所撒納的養老保險數額y(單位:元)與年份序號t的統計如下表:

1)求出t關于t的線性回歸方程

2)試預測2019年該員工的月平均工資為多少元?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

(注:,,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數的部分圖象.

1)求函數的表達式;

2)若函數滿足方程,求在內的所有實數根之和;

3)把函數的圖象的周期擴大為原來的兩倍,然后向右平移個單位,再把縱坐標伸長為原來的兩倍,最后向上平移一個單位得到函數的圖象.若對任意的,方程在區間上至多有一個解,求正數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數.

(1)當時,解不等式;

(2)若關于的方程的解集中恰有一個元素,求的取值范圍;

(3)設,若對任意,函數在區間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视