精英家教網 > 高中數學 > 題目詳情

設函數f(x)=
(1)對于任意實數x,f’(x)m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍。

(1)           (2)a<2或a> 

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,其中
在x=1處取得極值,求a的值;
的單調區間;
(Ⅲ)若的最小值為1,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知是定義在上的奇函數,當
(1)求的解析式;
(2)是否存在實數,使得當的最小值是4?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)設函數 其中
(Ⅰ)求的單調區間;
(Ⅱ) 討論的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分l4分)
已知函數f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求函數f(x)的解析式;
  (2)求證:對于區間[-1,1]上任意兩個自變量的值x1,x2,都有
|f(x1)-f(x2)|≤4;
(3)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題14分)
線的斜率是-5。
(Ⅰ)求實數b、c的值;
(Ⅱ)求f(x)在區間[-1,2]上的最大值;
(Ⅲ)對任意給定的正實數a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數:
(1)證明:++2=0對定義域內的所有都成立;
(2)當的定義域為[+,+1]時,求證:的值域為[-3,-2];
(3)若,函數=x2+|(x-) | ,求的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 ()(為自然對數的底數)
(1)求的極值
(2)對于數列,   ()
①  證明:
② 考察關于正整數的方程是否有解,并說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數.
(Ⅰ)當時,求函數的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视