【題目】設E,F分別是正方體ABCD﹣A1B1C1D1的棱DC上兩點,且AB=2,EF=1,給出下列四個命題:
①三棱錐D1﹣B1EF的體積為定值;
②異面直線D1B1與EF所成的角為45°;
③D1B1⊥平面B1EF;
④直線D1B1與平面B1EF所成的角為60°.
其中正確的命題為_____.
科目:高中數學 來源: 題型:
【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )
A. B.
C.
D. 1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地通過市場調查得到西紅柿種植成本(單位:元/千克)與上市時間
(單位:
天)的數據如下表:
時間 | |||
種植成本 |
(1)根據上表數據,發現二次函數能夠比較準確描述與
的變化關系,請求出函數的解析式;
(2)利用選取的函數,求西紅柿最低種植成本及此時的上市天數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數對任意實數x、y恒有
,當x>0時,f(x)<0,且
.
(1)判斷的奇偶性;
(2)求在區間[-3,3]上的最大值;
(3)若對所有的
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,
.
(1)當時,若對任意
均有
成立,求實數
的取值范圍;
(2)設直線與曲線
和曲線
相切,切點分別為
,
,其中
.
①求證:;
②當時,關于
的不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓(
)的離心率是
,點
在短軸
上,且
。
(1)球橢圓的方程;
(2)設為坐標原點,過點
的動直線與橢圓交于
兩點。是否存在常數
,使得
為定值?若存在,求
的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com