【題目】在中,三個內角
所對的邊分別為
,滿足
.
(1) 求角的大;
(2) 若,求
,
的值.(其中
)
【答案】(1);(2)4,6
【解析】
(1)已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數公式及誘導公式化簡,求出的值,即可確定出
的度數;(2)根據平面向量數量積的運算法則計算得到一個等式
,記作①,把
的度數代入求出
的值,記作②,然后利用余弦定理表示出
,把
及
的值代入求出
的值,利用完全平方公式表示出
,把相應的值代入,開方求出
的值,由②③可知
與
為一個一元二次方程的兩個解,求出方程的解,根據
大于
,可得出
,
的值.
(1)已知等式,
利用正弦定理化簡得,
整理得,
即,
,
則.
(2)由,得
, ①
又由(1) ,②
由余弦定理得,
將及①代入得
,
,
,③
由②③可知與
為一個一元二次方程
的兩個根,
解此方程,并由大于
,可得
.
科目:高中數學 來源: 題型:
【題目】為了解學生的課外閱讀時間情況,某學校隨機抽取了 50人進行統計分析,把這50人每天閱讀的時間(單位:分鐘)繪制成頻數分布表,如下表所示:
若把每天閱讀時間在60分鐘以上(含60分鐘)的同學稱為“閱讀達人”,根據統計結果中男女生閱讀達人的數據,制作出如圖所示的等高條形圖.
(1)根據抽樣結果估計該校學生的每天平均閱讀時間(同一組數據用該區間的中點值作為代表);
(2)根據已知條件完成下面的列聯表,并判斷是否有
的把握認為“閱讀達人”跟性別有關?
附:參考公式
,其中
.
臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設E,F分別是正方體ABCD﹣A1B1C1D1的棱DC上兩點,且AB=2,EF=1,給出下列四個命題:
①三棱錐D1﹣B1EF的體積為定值;
②異面直線D1B1與EF所成的角為45°;
③D1B1⊥平面B1EF;
④直線D1B1與平面B1EF所成的角為60°.
其中正確的命題為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣alnx+(a+1)x﹣(a>0).
(1)討論函數f(x)的單調性;
(2)若f(x)≥﹣+ax+b恒成立,求a
時,實數b的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知菱形,
在
軸上且
,
(
,
).
(Ⅰ)求點軌跡
的方程;
(Ⅱ)延長交軌跡
于點
,軌跡
在點
處的切線與直線
交于點
,試判斷以
為圓心,線段
為半徑的圓與直線
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為保護農民種糧收益,促進糧食生產,確保國家糧食安全,調動廣大農民糧食生產的積極性,從2004年開始,國家實施了對種糧農民直接補貼.通過對2014~2018年的數據進行調查,發現某地區發放糧食補貼額(億元)與該地區糧食產量
(萬億噸)之間存在著線性相關關系.統計數據如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
補貼額 | 9 | 10 | 12 | 11 | 8 |
糧食產量 | 23 | 25 | 30 | 26 | 21 |
(1)請根據如表所給的數據,求出關于
的線性回歸直線方程
;
(2)通過對該地區糧食產量的分析研究,計劃2019年在該地區發放糧食補貼額7億元,請根據(1)中所得的線性回歸直線方程,預測2019年該地區的糧食產量.
(參考公式:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等腰梯形ABCD(如圖1所示),其中AB∥CD,E,F分別為AB和CD的中點,且AB=EF=2,CD=6,M為BC中點.現將梯形ABCD沿著EF所在直線折起,使平面EFCB⊥平面EFDA(如圖2所示),N是線段CD上一動點,且.
(1)求證:MN∥平面EFDA;
(2)求三棱錐A-MNF的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com