【題目】已知函數的圖象過點
和點
.
(1)求函數的最大值與最小值;
(2)將函數的圖象向左平移
個單位后,得到函數
的圖象;已知點
,若函數
的圖象上存在點
,使得
,求函數
圖象的對稱中心.
科目:高中數學 來源: 題型:
【題目】如圖:在四棱錐中,
平面
,底面
是正方形,
.
(1)求異面直線與
所成角的大。ńY果用反三角函數值表示);
(2)求點、
分別是棱
和
的中點,求證:
平面
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
(
)的右焦點為
,短軸的一個端點
到
的距離等于焦距.
(1)求橢圓的標準方程;
(2)設、
是四條直線
,
所圍成的矩形在第一、第二象限的兩個頂點,
是橢圓
上任意一點,若
,求證:
為定值;
(3)過點的直線
與橢圓
交于不同的兩點
、
,且滿足△
與△
的面積的比值為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數方程為:
(t為參數),直線l與曲線C分別交于
兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓,定義橢圓C的“相關圓”E為:
.若拋物線
的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關圓”E的方程;
(2)過“相關圓”E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:
為定值(
為坐標原點);
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=
.
(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在長方體中,AD=2,AB=AE=1,M為矩形AEHD內的一點,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值為
那么點M到平面EFGH的距離是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com