【題目】三棱錐S﹣ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結論中: ①異面直線SB與AC所成的角為90°;
②直線SB⊥平面ABC;
③面SBC⊥面SAC;
④點C到平面SAB的距離是 .
其中正確結論的序號是 .
【答案】①②③④
【解析】解:由題意三棱錐S﹣ABC中,∠SBA=∠SCA=90°,知SB⊥BA,SC⊥CA, 又△ABC是斜邊AB=a的等腰直角三角形可得AC⊥BC,又BC∩SB=B,故有AC⊥面SBC,故有SB⊥AC,故①正確,
由此可以得到SB⊥平面ABC,故②正確,
再有AC面SAC得面SBC⊥面SAC,故③正確,
△ABC是斜邊AB=a的等腰直角三角形,點C到平面SAB的距離即點C到斜邊AB的中點的距離,即 ,故④正確.
所以答案是①②③④
【考點精析】掌握異面直線及其所成的角和直線與平面垂直的判定是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系;一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想.
科目:高中數學 來源: 題型:
【題目】已知分別是橢圓
的左、右焦點,動點
在
上,連結
并延長
至
點,使得
,設點
的軌跡為
.
(1)求的方程;
(2)設為坐標原點,點
,連結
交
于
點,若直線
的斜率與直線
的斜率存在且不為零,證明: 這兩條直線的斜率之比為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一條寬為的兩平行河岸有村莊
和供電站
,村莊
與
的直線距離都是
,
與河岸垂直,垂足為
現要修建電纜,從供電站
向村莊
供電.修建地下電纜、水下電纜的費用分別是
萬元
、
萬元
.
(1) 如圖①,已知村莊與
原來鋪設有電纜
,現先從
處修建最短水下電纜到達對岸后后,再修建地下電纜接入原電纜供電,試求該方案總施工費用的最小值;
(2) 如圖②,點在線段
上,且鋪設電纜的線路為
.若
,試用
表示出總施工費用
(萬元)的解析式,并求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)
已知函數f(x)=(x2+bx+b) (b∈R).
(1)當b=4時,求f(x)的極值;
(2)若f(x)在區間上單調遞增,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)為定義在[﹣1,1]上的奇函數,當x∈[﹣1,0]時,函數解析式為 .
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com