【題目】已知函數.
(Ⅰ)求證:當時,
的圖象位于直線
上方;
(Ⅱ)設函數,若曲線
在點
處的切線與
軸平行,且在點
處的切線與直線
平行(
為坐標原點),求證:
.
科目:高中數學 來源: 題型:
【題目】針對某新型病毒,某科研機構已研發出甲乙兩種疫苗,為比較兩種疫苗的效果,選取100名志愿者,將他們隨機分成兩組,每組50人.第一組志愿者注射甲種疫苗,第二組志愿者注射乙種疫苗,經過一段時間后,對這100名志愿者進行該新型病毒抗體檢測,發現有的志愿者未產生該新型病毒抗體,在未產生該新型病毒抗體的志愿者中,注射甲種疫苗的志愿者占
.
產生抗體 | 未產生抗體 | 合計 | |
甲 | |||
乙 | |||
合計 |
(1)根據題中數據,完成列聯表;
(2)根據(1)中的列聯表,判斷能否有的把握認為甲乙兩種疫苗的效果有差異.
參考公式:,其中
.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校在年的自主招生考試成績中隨機抽取
名學生的筆試成績,按成績共分五組,得到如下的頻率分布表:
組號 | 分組 | 頻數 | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 |
(1)請寫出頻率分布表中、
、
的值,若同組中的每個數據用該組區間的中間值代替,請估計全體考生的平均成績;
(2)為了能選出最優秀的學生,高校決定在筆試成績高的第、
、
組中用分層抽樣的方法抽取
名考生進入第二輪面試,求第
、
、
組中每組各抽取多少名考生進入第二輪的面試;
(3)在(2)的前提下,學校要求每個學生需從、
兩個問題中任選一題作為面試題目,求第三組和第五組中恰好有
個學生選到問題
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對一個量用兩種方法分別算一次,由結果相同而構造等式,這種方法稱為“算兩次”的思想方法.利用這種方法,結合二項式定理,可以得到很多有趣的組合恒等式.
(1)根據恒等式兩邊
的系數相同直接寫出一個恒等式,其中
;
(2)設,利用上述恒等式證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國的西氣東輸工程把西部的資源優勢變為經濟優勢,實現了氣能源需求與供給的東西部銜接,工程建設也加快了西部及沿線地區的經濟發展輸氣管道工程建設中,某段管道鋪設要經過一處峽谷,峽谷內恰好有一處直角拐角,水平橫向移動輸氣管經過此拐角,從寬為米峽谷拐入寬為
米的峽谷.如圖所示,位于峽谷懸崖壁上兩點
、
的連線恰好經過拐角內側頂點
(點
、
、
在同一水平面內),設
與較寬側峽谷懸崖壁所成角為
,則
的長為________(用
表示)米.要使輸氣管順利通過拐角,其長度不能低于________米.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1,F2為橢圓C:的左、右焦點,橢圓C過點M
,且MF2⊥F1F2.
(1)求橢圓C的方程;
(2)經過點P(2,0)的直線交橢圓C于A,B兩點,若存在點Q(m,0),使得|QA|=|QB|.
①求實數m的取值范圍:
②若線段F1A的垂直平分線過點Q,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,我國大力發展新能源汽車工業,新能源汽車(含電動汽車)銷量已躍居全球首位.某電動汽車廠新開發了一款電動汽車.并對該電動汽車的電池使用情況進行了測試,其中剩余電量y與行駛時問 (單位:小時)的測試數據如下表:
(1)根據電池放電的特點,剩余電量y與行駛時間之間滿足經驗關系式:
,通過散點圖可以發現y與
之間具有相關性.設
,利用表格中的前8組數據求相關系數r,并判斷是否有99%的把握認為
與
之間具有線性相關關系;(當相關系數r滿足
時,則認為有99%的把握認為兩個變量具有線性相關關系)
(2)利用與
的相關性及表格中前8組數據求出
與
之間的回歸方程;(結果保留兩位小數)
(3)如果剩余電量不足0.8,電池就需要充電.從表格中的10組數據中隨機選出8組,設X表示需要充電的數據組數,求X的分布列及數學期望.
附:相關數據:.
表格中前8組數據的一些相關量:,
,
相關公式:對于樣本,其回歸直線
的斜率和戧距的最小二乘估計公式分別為:
,
相關系數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com