【題目】(本小題共12分)
如圖,在直三棱柱中,
,點
是
的中點,
(1)求證:平面
;
(2)求證:平面
【答案】(1)見解析;(2)見解析。
【解析】本題考查直線與平面平行的判定,直線與平面垂直的判定,考查學生空間想象能力,邏輯思維能力,是中檔題
(Ⅰ)欲證CD⊥平面A1ABB1,可先證平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,滿足根據面面垂直的性質;
(Ⅱ)欲證AC1∥平面CDB1,根據直線與平面平行的判定定理可知只需證AC1與平面CDB1內一直線平行,連接BC1,設BC1與B1C的交點為E,連接DE.根據中位線可知DE∥AC1,DE平面CDB1,AC1平面CDB1,滿足定理所需條件.
(1)因為是直棱柱,所以平面
又因為平面
,所以
。
因為中
且點
是
的中點,所以
又因為,所以
平面
。
(2)連接,交
于
。點
是
的中點
在中,
是中位線,所以
又因為平面
,且
平面
所以平面
科目:高中數學 來源: 題型:
【題目】已知f(x)= .
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對任意x>0,f(x)≤t恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(x+ )+cosx,x∈R,
(1)求函數f(x)的最大值,并寫出當f(x)取得最大值時x的取值集合;
(2)若α∈(0, ),f(α+
)=
,求f(2α)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等差數列,且a3=﹣6,a6=0.
(1)求{an}的通項公式.
(2)若等比數列{bn}滿足b1=8,b2=a1+a2+a3 , 求{bn}的前n項和公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊長,已知a、b、c成等比數列,且a2﹣c2=ac﹣bc,
(1)求∠A的大;
(2)求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)滿足:f(x)= ,且f(x+2)=f(x),g(x)=
,則方程f(x)=g(x)在區間[﹣5,1]上的所有實根之和為( )
A.﹣5
B.﹣6
C.﹣7
D.﹣8
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com