精英家教網 > 高中數學 > 題目詳情

【題目】已知定點,定直線,動圓經過點且與直線相切.

(I)求動圓圓心的軌跡方程;

(II)設點為曲線上不同的兩點,且,過兩點分別作曲線的兩條切線,且二者相交于點,求面積的最小值.

【答案】() ()4

【解析】

(Ⅰ)根據圓心運動的特點,得到其軌跡,求出軌跡方程.

(Ⅱ)直線與拋物線聯立,得到的關系,再利用導數求出過兩點的兩條切線,表示出的面積,找到其最小值.

()由題意知,動圓圓心到點的距離與到直線的距離相等,

所以圓心的軌跡方程以為焦點,直線為準線的拋物線,

動圓圓心的軌跡方程為: .

()得,三點共線,

設直線方程為:,則

,

于是,

因為,所以,

,即

同理,即

聯立

得:,

,即 .

的距離為

,

時,最小,最小面積為4.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,一條準線方程為

⑴求橢圓的方程;

⑵設為橢圓上的兩個動點,為坐標原點,且

①當直線的傾斜角為時,求的面積;

②是否存在以原點為圓心的定圓,使得該定圓始終與直線相切?若存在,請求出該定圓方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市場研究人員為了了解產業園引進的甲公司前期的經營狀況,對該公司2018年連續六個月的利潤進行了統計,并根據得到的數據繪制了相應的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;

甲公司新研制了一款產品,需要采購一批新型材料,現有兩種型號的新型材料可供選擇,按規定每種新型材料最多可使用個月,但新材料的不穩定性會導致材料損壞的年限不同,現對兩種型號的新型材料對應的產品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數統計如下表:

使用壽命/材料類型

1個月

2個月

3個月

4個月

總計

A

20

35

35

10

100

B

10

30

40

20

100

經甲公司測算平均每包新型材料每月可以帶來萬元收入,不考慮除采購成本之外的其他成本,材料每包的成本為萬元, 材料每包的成本為萬元.假設每包新型材料的使用壽命都是整月數,且以頻率作為每包新型材料使用壽命的概率,如果你是甲公司的負責人,以每包新型材料產生利潤的期望值為決策依據,你會選擇采購哪款新型材料?

參考數據:,

參考公式:回歸直線方程,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:

日期

122

123

124

溫差

11

13

12

發芽數(顆)

25

30

26

1)請根據122日至124日的數據,求出關于的線性回歸方程;

2)該農科所確定的研究方案是:先用上面的3組數據求線性回歸方程,再選取2組數據進行檢驗.若125日溫差為,發芽數16顆,126日溫差為,發芽數23顆.由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

注:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為發揮體育在核心素養時代的獨特育人價值,越來越多的中學已將某些體育項目納入到學生的必修課程,甚至關系到是否能拿到畢業證.某中學計劃在高一年級開設游泳課程,為了解學生對游泳的興趣,某數學研究性學習小組隨機從該校高一年級學生中抽取了100人進行調查,其中男生60人,且抽取的男生中對游泳有興趣的占,而抽取的女生中有15人表示對游泳沒有興趣.

(1)試完成下面的列聯表,并判斷能否有的把握認為“對游泳是否有興趣與性別有關”?

有興趣

沒興趣

合計

男生

女生

合計

(2)已知在被抽取的女生中有6名高一(1)班的學生,其中3名對游泳有興趣,現在從這6名學生中隨機抽取3人,求至少有2人對游泳有興趣的概率.

(3)該研究性學習小組在調查中發現,對游泳有興趣的學生中有部分曾在市級和市級以上游泳比賽中獲獎,如下表所示.若從高一(8)班和高一(9)班獲獎學生中各隨機選取2人進行跟蹤調查,記選中的4人中市級以上游泳比賽獲獎的人數為,求隨機變量的分布列及數學期望.

班級

市級比賽

獲獎人數

2

2

3

3

4

4

3

3

4

2

市級以上比賽獲獎人數

2

2

1

0

2

3

3

2

1

2

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左,右焦點,上頂點為,為橢圓上任意一點,且的面積最大值為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若點.為橢圓上的兩個不同的動點,且為坐標原點),則是否存在常數,使得點到直線的距離為定值?若存在,求出常數和這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是甲、乙兩名運動員某賽季一些場次得分的莖葉圖,據圖可知以下說法正確的是 _____.(填序號)

①甲運動員的成績好于乙運動員;②乙運動員的成績好于甲運動員;

③甲、乙兩名運動員的成績沒有明顯的差異;④甲運動員的最低得分為0分.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線的焦點為,在上存在,兩點滿足,且點軸上方,以為切點作的切線與該拋物線的準線相交于,則的坐標為__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;

(Ⅱ)已知直線的參數方程為,為參數,且,交于點交于點,且,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视