【題目】已知拋物線:
(
)與橢圓
:
相交所得的弦長為
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設,
是
上異于原點
的兩個不同點,直線
和
的傾斜角分別為
和
,當
,
變化且
為定值
(
)時,證明:直線
恒過定點,并求出該定點的坐標.
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若對任意,都有
成立,求
的值值范圍;
(2)若先將的圖象上每個點縱坐標不變,橫坐標變為原來的2倍,然后再向左平移
個單位得到函數
的圖象,求函數
在區間
內的所有零點之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我校名教師參加我縣“六城”同創“干部職工進網絡,服務群眾進社區”活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組,第二組
,第三組
,第四組
,第五組
,得到的頻率分布直方圖如圖所示:
上表是年齡的頻數分布表.
(1)求正整數的值;
(2)根據頻率分布直方圖估計我校這名教師年齡的中位數和平均數;
(3)從第一、二組用分層抽樣的方法抽取4人,現在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有一條光線從射出,并且經
軸上一點
反射.
(1)求入射光線和反射光線所在的直線方程(分別記為);
(2)設動直線,當點
到
的距離最大時,求
所圍成的三角形的內切圓(即:圓心在三角形內,并且與三角形的三邊相切的圓)的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
(
)與橢圓
:
相交所得的弦長為
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設,
是
上異于原點
的兩個不同點,直線
和
的傾斜角分別為
和
,當
,
變化且
為定值
(
)時,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,由三棱柱和四棱錐
構成的幾何體中,
平面
,
,
,
,平面
平面
.
(Ⅰ)求證: ;
(Ⅱ)若為棱
的中點,求證:
平面
;
(Ⅲ)在線段上是否存在點
,使直線
與平面
所成的角為
?若存在,求
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班有學生50人,其中男同學30人,用分層抽樣的方法從該班抽取5人去參加某社區服務活動。
(1)求從該班男、女同學中各抽取的人數;
(2)從抽取的5名同學中任選2名談此活動的感受,求選出的2名同學中恰有1名男同學的概率
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com