【題目】某單位有、
、
三個工作點,需要建立一個公共無線網絡發射點
,使得發射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為
,
,
.假定
、
、
、
四點在同一平面內.
(Ⅰ)求的大。
(Ⅱ)求點到直線
的距離.
【答案】(Ⅰ)(Ⅱ)
【解析】
試題分析:(1)△ABC中,由余弦定理求得cosA 的值,即可求得 A 的值;(2)過點O作OD⊥BC,D為垂足,則OD即為所求.由O為△ABC的外心,可得∠BOC=120°,故∠BOD=60°,且D為BC的中點,BD=35.在 Rt△BOD中,根據tan∠BOD=tan60°=,求得OD的值
試題解析:(Ⅰ)在△中,因為
,
,
,
由余弦定理得
.
因為為△
的內角,所以
.
(Ⅱ)方法1:設外接圓的半徑為,
因為,由(1)知
,所以
.
所以,即
.
過點
作邊
的垂線,垂足為
,
在△中,
,
,
所以
.
所以點到直線
的距離為
.
方法2:因為發射點到
、
、
三個工作點的距離相等,所以點
為△
外接圓的圓心.連結
,
,過點
作邊
的垂線,垂足為
,
由(1)知,所以
.
所以.在
△
中,
,
所以.
所以點到直線
的距離為
.……………………12分
科目:高中數學 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是
.
(1)求的值;
(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為,第二次取出的小球標號為
.
(i)記“”為事件
,求事件
的概率;
(ii)在區間內任取2個實數
,求事件“
恒成立”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(左)視圖均為直角三角形,俯視圖外框為矩形,相關數據如圖2所示.
(1)設中點為
,在直線
上找一點
,使得
平面
,并說明理由;
(2)若二面角的平面角的余弦值為
,求四棱錐
的外接球的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.已知點
的極坐標為
,曲線
的參數方程為
(
為參數).
(1)直線過
且與曲線
相切,求直線
的極坐標方程;
(2)點與點
關于
軸對稱,求曲線
上的點到點
的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F并且經過點A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點,O為坐標原點,求△OMN的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個袋中裝有5個形狀大小完全相同的球,其中有2個紅球,3個白球.
(1)從袋中隨機取兩個球,求取出的兩個球顏色不同的概率;
(2)從袋中隨機取一個球,將球放回袋中,然后再從袋中隨機取一個球,求兩次取出的球中至少有一個紅球的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com