精英家教網 > 高中數學 > 題目詳情

【題目】關于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.

【答案】
(1)

∵關于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數根,

∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,

解得:m>﹣


(2)

解:m=1,此時原方程為x2+3x=0,

即x(x+3)=0,

解得:x1=0,x2=﹣3.


【解析】(1)由方程有兩個不相等的實數根即可得出△>0,代入數據即可得出關于m的一元一次不等式,解不等式即可得出結論;(2)結合(1)結論,令m=1,將m=1代入原方程,利用因式分解法解方程即可得出結論.
【考點精析】本題主要考查了因式分解法和求根公式的相關知識點,需要掌握已知未知先分離,因式分解是其次.調整系數等互反,和差積套恒等式.完全平方等常數,間接配方顯優勢;根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數根2、當△=0時,一元二次方程有2個相同的實數根3、當△<0時,一元二次方程沒有實數根才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知矩形,過平面,再過于點,過于點

Ⅰ)求證:

Ⅱ)若平面于點,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圖1是某公交公司1路車從起點站A站途經B站和C站,最終到達終點站D站的格點站路線圖.(8×8的格點圖是由邊長為1的小正方形組成)

(1)求1路車從A站到D站所走的路程(精確到0.1);
(2)在圖2、圖3和圖4的網格中各畫出一種從A站到D站的路線圖.(要求:①與圖1路線不同、路程相同;②途中必須經過兩個格點站;③所畫路線圖不重復)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】計算:(3﹣π)0+4sin45°﹣ +|1﹣ |.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩名籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為

(1)乙投球的命中率。

(2)若甲投球1次,乙投球2次,兩人共命中的次數記為,求的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極值.

(1)討論是函數的極大值還是極小值;

(2)過點作曲線的切線,求此切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高科技企業生產產品A和產品B需要甲、乙兩種新型材料.生產一件產品A需要甲材料1.5kg乙材料1kg,用5個工時;生產一件產品B需要甲材料0.5kg,乙材料0.3kg,用3個工時.生產一件產品A的利潤為2100元,生產一件產品B的利潤為900元.該企業現有甲材料150kg乙材料90kg,求在不超過600個工時的條件下,生產產品A和產品B的利潤之和的最大值(元).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等比數列中,已知,且成等差數列.

(1)求數列的通項公式;

(2)求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知⊙和點.作⊙的兩條切線,切點分別為且直線的方程為

(1)求⊙的方程

(2)設為⊙上任一點,過點向⊙引切線,切點為, 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视