【題目】已知函數,其中
.
(Ⅰ)求的單調區間;
(Ⅱ)設,若曲線
,
有公共點
,且在點
處的切線相同,求
的最大值.
科目:高中數學 來源: 題型:
【題目】如圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是( )
A. 從2000年至2016年,該地區環境基礎設施投資額逐年增加;
B. 2011年該地區環境基礎設施的投資額比2000年至2004年的投資總額還多;
C. 2012年該地區基礎設施的投資額比2004年的投資額翻了兩番 ;
D. 為了預測該地區2019年的環境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型
,根據該模型預測該地區2019的環境基礎設施投資額為256.5億元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF平面ABCD,DE=DA=DB=2
(I)若G為DC的中點,求證:EG//平面BCF;
(II)若 ,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直角坐標系的原點和極坐標系
的極點重合,
軸非負半軸與極軸重合, 單位長度相同, 在直角坐標系下, 曲線
的參數方程為
,
為參數) .
(1) 寫出曲線的極坐標方程;
(2) 直線的極坐標方程為
,求曲線
與直線
在平面直角坐標系中的交點坐標 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某互聯網公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量
(單位:萬元)和收益
(單位:萬元)的數據如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②
分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統計量的值:
(Ⅰ)根據殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數據被認為是異常數據,需要剔除:
(ⅰ)剔除異常數據后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時,該模型收益的預報值是多少?
附:對于一組數據,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±
x,右頂點為(1,0).
(1)求雙曲線C的方程;
(2)已知直線y=x+m與雙曲線C交于不同的兩點A,B,且線段AB的中點為,當x0≠0時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線L:(
為參數),曲線
(
為參數)
(Ⅰ)設與
相交于
兩點,求
;
(Ⅱ)若把曲線上各點的橫坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com