證明不等式ex>x+1>㏑x,x>0
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ex,a,b
R,且a>0.
⑴若a=2,b=1,求函數f(x)的極值;
⑵設g(x)=a(x-1)ex-f(x).
①當a=1時,對任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
②設g′(x)為g(x)的導函數.若存在x>1,使g(x)+g′(x)=0成立,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數:f(x)=x3+ax2+bx+c,過曲線y=f(x)上的點P(1,f(1))的切線方程為y=3x+1
(1)y=f(x)在x=-2時有極值,求f(x)的表達式;
(2)函數y=f(x)在區間[-2,1]上單調遞增,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于三次函數,定義
是
的導函數
的導函數,若方程
有實數解
,則稱點
為函數
的“拐點”,可以證明,任何三次函數都有“拐點”,任何三次函數都有對稱中心,且“拐點”就是對稱中心,請你根據這一結論判斷下列命題:
①任意三次函數都關于點
對稱:
②存在三次函數,若
有實數解
,則點
為函數
的對稱中心;
③存在三次函數有兩個及兩個以上的對稱中心;
④若函數,則:
其中所有正確結論的序號是( ).
A.①②④ | B.①②③ | C.①③④ | D.②③④ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定義在R上的函數f(x)=-2x3+bx2+cx(b,c∈R),函數F(x)=f(x)-3x2是奇函數,函數f(x)滿足.
(1)求f(x)的解析式;
(2)討論f(x)在區間(-3,3)上的單調性.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com