精英家教網 > 高中數學 > 題目詳情

證明不等式ex>x+1>㏑x,x>0

見解析

解析試題分析:要證明該不等式得分兩步,首先證明,設出,只需證明即可,所以求導,根據,判斷單調性,從而得出的最小值,證明.同理證明.
試題解析:①令,
,所以 上單調遞增。
故對任意,有
,所以

②令,,

,得
變化時,,的變化情況如下表:






-





 

 

即對任意
所以
綜上當時,有
考點:導數法求最值.比較大小.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若,求函數的單調區間;
(2)設函數在區間上是增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ex,a,bR,且a>0.
⑴若a=2,b=1,求函數f(x)的極值;
⑵設g(x)=a(x-1)ex-f(x).
①當a=1時,對任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
②設g′(x)為g(x)的導函數.若存在x>1,使g(x)+g′(x)=0成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數:f(x)=x3+ax2+bx+c,過曲線y=f(x)上的點P(1,f(1))的切線方程為y=3x+1
(1)y=f(x)在x=-2時有極值,求f(x)的表達式;
(2)函數y=f(x)在區間[-2,1]上單調遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知處都取得極值.
(1)求,的值;
(2)設函數,若對任意的,總存在,使得、,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于三次函數,定義的導函數的導函數,若方程有實數解,則稱點為函數的“拐點”,可以證明,任何三次函數都有“拐點”,任何三次函數都有對稱中心,且“拐點”就是對稱中心,請你根據這一結論判斷下列命題:
①任意三次函數都關于點對稱:
②存在三次函數,若有實數解,則點為函數的對稱中心;
③存在三次函數有兩個及兩個以上的對稱中心;
④若函數,則:
其中所有正確結論的序號是(     ).

A.①②④ B.①②③ C.①③④ D.②③④

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義在R上的函數f(x)=-2x3+bx2+cx(b,c∈R),函數F(x)=f(x)-3x2是奇函數,函數f(x)滿足.
(1)求f(x)的解析式;
(2)討論f(x)在區間(-3,3)上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知的導函數,,且函數的圖象過點
(1)求函數的表達式;
(2)求函數的單調區間和極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的導函數為偶函數,且曲線在點處的切線的斜率為.
(1)確定的值;
(2)若,判斷的單調性;
(3)若有極值,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视