【題目】在三棱柱中,側面
為菱形,且
,點E,F分別為
,
的中點.求證:
(1)平面平面
;
(2)平面
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(x﹣2)ax2+ax(a∈R).
(1)當a=1時,求f(x)的極值;
(2)若f(x)恰有兩個零點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=n2+pn,且a4,a7,a12成等比數列.
(1)求數列{an}的通項公式;
(2)若bn,求數列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前
項和為
,且
.
(1)求證:數列為等比數列;
(2)設數列的前
項和為
,求證:
為定值;
(3)判斷數列中是否存在三項成等差數列,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】著名數學家華羅庚先生曾說過:“數缺形時少直觀,形缺數時難入微數形結合百般好,隔裂分家萬事休.”在數學的學習和研究中,我們經常用函數的圖象來研究函數的性質,也經常用函數的解析式來琢磨函數的圖象的特征,如某體育品牌的LOGO為,可抽象為如圖所示的軸對稱的優美曲線,下列函數中,其圖象大致可“完美”局部表達這條曲線的函數是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校舉辦的體育節設有投籃項目.該項目規定:每位同學僅有三次投籃機會,其中前兩次投籃每投中一次得1分,第三次投籃投中得2分,若不中不得分,投完三次后累計總分.
(1)若甲同學每次投籃命中的概率為,且相互不影響,記甲同學投完三次后的總分為X,求隨機變量X的概率分布列;
(2)若(1)中的甲同學邀請乙同學一起參加投籃項目,已知乙同學每次投籃命中的概率為,且相互不影響,甲、乙兩人之間互不干擾.求甲同學的總分低于乙同學的總分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】運用祖暅原理計算球的體積時,夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意一個平面所截,若截面面積都相等,則這兩個幾何體的體積相等.構造一個底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個平行于底面的平面去截它們時,可證得所截得的兩個截面面積相等,由此可證明新幾何體與半球體積相等.現將橢圓繞y軸旋轉一周后得一橄欖狀的幾何體(如圖③),類比上述方法,運用祖暅原理可求得其體積等于( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在3世紀中期,我國古代數學家劉徽在《九章算術注》中提出了割圓術:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這可視為中國古代極限觀念的佳作.割圓術可以視為將一個圓內接正邊形等分成
個等腰三角形(如圖所示),當
變得很大時,等腰三角形的面積之和近似等于圓的面積.運用割圓術的思想,可得到sin3°的近似值為( )(
取近似值3.14)
A.0.012B.0.052
C.0.125D.0.235
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com