精英家教網 > 高中數學 > 題目詳情

【題目】傳承傳統文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏,將中學組和大學組的參賽選手按成績分為優秀、良好、一般三個等級,隨機從中抽取了100名選手進行調查,下面是根據調查結果繪制的選手等級人數的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據已知條件完成下面的列聯表,并據此資料你是否有95%的把握認為選手成績“優秀”與文化程度有關?

(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優秀等級的選手人數;

(3)在優秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數解的概率.

【答案】(1)見解析;(2);(3).

【解析】試題分析:(1)根據條形圖數據填表,根據卡方公式計算值,最后與參考數據比較得結論,(2)根據頻率等于頻數與總數的比值求頻率,再根據頻數等于頻率與總數的乘積得頻數.(3)先根據枚舉法得到基本事件的總數,再根據方程組有唯一解得到,即去掉不滿足條件的3種事件,最后根據古典概型概率公式求概率.

試題解析:(1)由條形圖可知列聯表如下:

所以沒有95%的把握認為優秀與文化程度有關.

(2)由條形圖知,所抽取的100人中,優秀等級有75人,故優秀率為

所以所有參賽選手中優秀等級人數約為萬人.

(3)從1,2,3,4,5,6中取, 從1,2,3,4,5,6中取,故共有36種,要使方程組有唯一一組實數解,則,共33種情形.

故概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,多面體中,面為矩形,,且

(1)求證:平面;

(2)求所成角的余弦值;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足,其中, .

(1)求, , ,并猜想的表達式(不必寫出證明過程);

(2)設,數列的前項和為,求證: .

(B)已知數列的前項和為,且滿足 .

(1)求, , , ,并猜想的表達式(不必寫出證明過程);

(2)設, ,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平行四邊形,,的中點且△是等邊三角形,沿把△折起至的位置,使得

1是線段的中點求證平面;

2求證:;

3求點到平面的距離

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(A)已知數列滿足,其中, .

(1)求, ,并猜想的表達式(不必寫出證明過程);

(2)由(1)寫出數列的前項和,并用數學歸納法證明.

(B)已知數列的前項和為,且滿足 .

(1)猜想的表達式,并用數學歸納法證明;

(2)設, ,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的標準方程;

(2)已知點,和平面內一點),過點任作直線與橢圓相交于,兩點,設直線,的斜率分別為,,,試求滿足的關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A(4,-3),B(2,-1)和直線l:4x+3y-2=0

(1)求在直角坐標平面內滿足|PA|=|PB|的點P的方程;

(2)求在直角坐標平面內一點P滿足|PA|=|PB|且點P到直線l的距離為2的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題錯誤的是 ( )

A. 如果平面平面,那么平面內一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內所有直線都垂直于平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中是自然對數的底數.

1若曲線處的切線方程為.求實數的值;

2時,函數既有極大值,又有極小值,求實數的取值范圍;

,若對一切正實數恒成立,求實數的取值范圍表示

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视