【題目】已知棱長為1的正方體ABCD-A1B1C1D1中,點E,F,M分別是AB,AD,AA1的中點,又P,Q分別在線段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,設平面MEF∩平面MPQ=l,則下列結論中不成立的是 ( )
A. l∥平面ABCD
B. l⊥AC
C. 平面MEF與平面MPQ不垂直
D. 當x變化時,l不是定直線
科目:高中數學 來源: 題型:
【題目】已知,正方體ABCD-A1B1C1D1中,點E,F分別為D1C1,C1B1的中點,
AC∩BD=P,A1C1∩EF=Q.求證:
(1)D,B,E,F四點共面.
(2)若A1C交平面BDEF于點R,則P,Q,R三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“3+3”的構成模式,第一個“3”是語文、數學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體S,從學生群體S中隨機抽取了50名學生進行調查,他們選考物理,化學,生物的科目數及人數統計如表:
選考物理、化學、生物的科目數 | 1 | 2 | 3 |
人數 | 5 | 25 | 20 |
(I)從所調查的50名學生中任選2名,求他們選考物理、化學、生物科目數量不相等的概率;
(II)從所調查的50名學生中任選2名,記X表示這2名學生選考物理、化學、生物的科目數量之差的絕對值,求隨機變量X的分布列和數學期望;
(III)將頻率視為概率,現從學生群體S中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數記作Y,求事件“y≥2”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ,
]時f(x)的值域;
(2)在△ABC中,角A、B、C所對的邊為a,b,c,且角C為銳角,S△ABC= ,c=2,f(C+
)=
﹣
.求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信紅包是一款可以實現收發紅包、查收記錄和提現的手機應用.某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環境下,對它們搶到的紅包個數進行統計,得到如表數據:
型號 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(個) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果搶到紅包個數超過5個的手機型號為“優”,否則“非優”,請據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?
(Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出3種型號的手機進行大規模宣傳銷售.
①求在型號Ⅰ被選中的條件下,型號Ⅱ也被選中的概率;
②以X表示選中的手機型號中搶到的紅包超過5個的型號種數,求隨機變量X的分布列及數學期望E(X).
下面臨界值表供參考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界,已知函數
.
(Ⅰ)若是奇函數,求
的值.
(Ⅱ)當時,求函數
在
上的值域,判斷函數
在
上是否為有界函數,并說明理由.
(Ⅲ)若函數在
上是以
為上界的函數,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com