設,(1)分別求
;(2)然后歸納猜想一般性結論,并給出證明.
科目:高中數學 來源: 題型:解答題
已知函數(b為常數).
(1)函數f(x)的圖像在點(1,f(1))處的切線與g(x)的圖像相切,求實數b的值;
(2)設h(x)=f(x)+g(x),若函數h(x)在定義域上存在單調減區間,求實數b 的取值范圍;
(3)若b>1,對于區間[1,2]上的任意兩個不相等的實數x1,x2,都有|f(x1)-f(x2)|> |g(x1)-g(x2)|成立,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定義在[-1,1]上的奇函數滿足
,且當
,
時,有
.
(1)試問函數f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標;若不存在,請說明理由并加以證明.
(2)若對所有
,
恒成立,
求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com