【題目】共享單車是指由企業在校園、公交站點、商業區、公共服務區等場所提供的自行車單車共享服務,由于其依托“互聯網+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監管,隨機選取了50人就該城市共享單車的推行情況進行問卷調査,并將問卷中的這50人根據其滿意度評分值(百分制)按照分成5組,請根據下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表
組別 | 分組 | 頻數 | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ▆ | ||
第3組 | 20 | 0.40 | |
第4組 | ▆ | 0.08 | |
第5組 | 2 | ||
合計 | ▆ | ▆ |
(1)求的值;
(2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.
【答案】(1);(2)
.
【解析】
(1)根據頻率分布表可得b.先求得內的頻數,即可由總數減去其余部分求得
.結合頻率分布直方圖,即可求得
的值.
(2)根據頻率分布表可知在內有4人,在
有2人.列舉出從這6人中選取2人的所有可能,由古典概型概率計算公式即可求解.
(1)由頻率分布表可得
內的頻數為
,
∴
∴內的頻率為
∴
∵內的頻率為0.04
∴
(2)由題意可知,第4組共有4人,第5組共有2人,
設第4組的4人分別為、
、
、
;第5組的2人分別為
、
從中任取2人的所有基本事件為:,
,
,
,
,
,
,
,
,
,
,
,
,
,
共15個.
至少一人來自第5組的基本事件有:,
,
,
,
,
,
,
共9個.
所以.
∴所抽取2人中至少一人來自第5組的概率為.
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,且滿足
,
,設
,則以下四個命題:(1)
是等差數列;(2)
中最大項是
;(3)
通項公式是
;(4)
.其中真命題的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=
.
(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的左、右焦點分別為
,
,點
在橢圓上.
(1)求橢圓的方程;
(2)若A,B是橢圓上位于x軸上方的兩點,直線與直線
交于點P,
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓長軸的兩個端點分別為
,
, 離心率
.
(1)求橢圓的標準方程;
(2)作一條垂直于軸的直線,使之與橢圓
在第一象限相交于點
,在第四象限相交于點
,若直線
與直線
相交于點
,且直線
的斜率大于
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分,眾數,中位數;
(3)若這100名學生語文成績某些分數段的人數()與數學成績相應分數段的人數(
)之比如下表所示,求數學成績在[50,90)之外的人數.
分數段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com