精英家教網 > 高中數學 > 題目詳情

【題目】共享單車是指由企業在校園、公交站點、商業區、公共服務區等場所提供的自行車單車共享服務,由于其依托互聯網+”,符合低碳出行的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監管,隨機選取了50人就該城市共享單車的推行情況進行問卷調査,并將問卷中的這50人根據其滿意度評分值(百分制)按照分成5組,請根據下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:

頻率分布表

組別

分組

頻數

頻率

1

8

0.16

2

3

20

0.40

4

0.08

5

2

合計

1)求的值;

2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.

【答案】1;(2.

【解析】

1)根據頻率分布表可得b.先求得內的頻數,即可由總數減去其余部分求得.結合頻率分布直方圖,即可求得的值.

2)根據頻率分布表可知在內有4,2.列舉出從這6人中選取2人的所有可能,由古典概型概率計算公式即可求解.

1)由頻率分布表可得

內的頻數為,

內的頻率為

內的頻率為0.04

2)由題意可知,4組共有4,5組共有2,

設第4組的4人分別為、;第5組的2人分別為

從中任取2人的所有基本事件為:,,,,,,,,,,,,,,15.

至少一人來自第5組的基本事件有:,,,,,,,9.

所以.

∴所抽取2人中至少一人來自第5組的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且滿足,設,則以下四個命題:(1是等差數列;(2中最大項是;(3通項公式是;(4.其中真命題的序號是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為,,點在橢圓上.

1)求橢圓的方程;

2)若A,B是橢圓上位于x軸上方的兩點,直線與直線交于點P,,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓長軸的兩個端點分別為,, 離心率.

1)求橢圓的標準方程;

2)作一條垂直于軸的直線,使之與橢圓在第一象限相交于點,在第四象限相交于點,若直線與直線相交于點,且直線的斜率大于,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中的值;

(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分,眾數,中位數;

(3)若這100名學生語文成績某些分數段的人數()與數學成績相應分數段的人數()之比如下表所示,求數學成績在[50,90)之外的人數.

分數段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數存在兩個零點.

1)求實數的取值范圍;

2)若,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一塊多邊形的花園,它的水平放置的平面圖形的斜二測直觀圖是如圖所示的直角梯形,其中,米,,則這塊花園的面積為______平方米.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足:a1=1,,記.

1)求b1b2的值;

2)證明:數列{bn}是等比數列;

3)求數列{an}的通項公式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视