已知函數f(x)=3x-.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.
科目:高中數學 來源: 題型:解答題
某單位有員工1000名,平均每人每年創造利潤10萬元。為了增加企業競爭力,決定優化產業結構,調整出名員工從事第三產業,調整后他們平均每人每年創造利為
萬元
,剩下的員工平均每人每年創造的利潤可以提高
.
(1)若要保證剩余員工創造的年總利潤不低于原來1000名員工創造的年總利潤,則最多調整出多少名員工從事第三產業?
(2)在(1)的條件下,若調整出的員工創造的年總利潤始終不高于剩余員工創造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(a≠0)滿足
,
為偶函數,且x=-2是函數
的一個零點.又
(
>0).
(1)求函數的解析式;
(2)若關于x 的方程在
上有解,求實數
的取值范圍;
(3)令,求
的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點,焦點在軸上的橢圓
的離心率為
,橢圓上異于長軸頂點的任意點
與左右兩焦點
、
構成的三角形中面積的最大值為
.
(1)求橢圓的標準方程;
(2)已知點,連接
與橢圓的另一交點記為
,若
與橢圓相切時
、
不重合,連接
與橢圓的另一交點記為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知二次函數f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數g(x)=f(x)-mx (x∈R)是單調函數,求證:m≤0或m≥1.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某校要建一個面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網圍成,且在矩形一邊的鋼筋網的正中間要留一個3米的進出口(如圖).設矩形的長為米,鋼筋網的總長度為
米.
(1)列出與
的函數關系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時,所用的鋼筋網的總長度最小?
(3)若由于地形限制,該球場的長和寬都不能超過25米,問矩形的長與寬各為多少米時,所用的鋼筋網的總長度最?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com