精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=xm且f(4)=.
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調性,并給予證明.

(1)m=1
(2)奇函數
(3)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設二次函數
(1)求函數的最小值;
(2)問是否存在這樣的正數,當時,,且的值域為?若存在,求出所有的的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形.由對稱性,圖中8個三角形都是全等的三角形,設

(1)試用表示的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是定義在上的奇函數,且,若恒成立.
(1)判斷上是增函數還是減函數,并證明你的結論;
(2)若對所有恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數滿足對任意的恒有,且當時,.
(1)求的值;
(2)判斷的單調性
(3)若,解不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=3x.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關系:(,為常數),若不建隔熱層,每年能源消耗費用為8萬元.設為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最?并求出最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某通訊公司需要在三角形地帶區域內建造甲、乙兩種通信信號加強中轉站,甲中轉站建在區域內,乙中轉站建在區域內.分界線固定,且=百米,邊界線始終過點,邊界線滿足
()百米,百米.

(1)試將表示成的函數,并求出函數的解析式;
(2)當取何值時?整個中轉站的占地面積最小,并求出其面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在[-1,1]上的奇函數f(x),已知當x∈[-1,0]時,
f(x)= (a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函數,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视