【題目】已知,將
的圖像向右平移
個單位后,再保持縱坐標不變,橫坐標變為原來的2倍,得到函數
的圖象.
(1)求函數在
上的值域及單調遞增區間;
(2)若,且
,
,求
的面積.
科目:高中數學 來源: 題型:
【題目】已知某種新型病毒的傳染能力很強,給人們生產和生活帶來很大的影響,所以創新研發疫苗成了當務之急.為此,某藥企加大了研發投入,市場上這種新型冠狀病毒的疫苗的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 14 |
銷量 | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根據上表中的數據,建立關于
的線性回歸方程
(用分數表示);
(2)根據所求的回歸方程,估計當研發費用為1600萬元時,銷售量為多少?
參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,已知橢圓的離心率為
,左右焦點分別是
和
,以
為圓心,3為半徑的圓與以
為圓心,1為半徑的圓相交,且交點在橢圓C上.
(1)求橢圓C的方程.
(2)設橢圓,P為橢圓C上任意一點,過點P的直線
交橢圓E于A、B兩點,射線OP交橢圓E于點Q.
①判斷是否為定值?若是定值求出該定值,若不是定值說明理由.
②求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中共有8個球,其中有3個白球,5個黑球,這些球除顏色外完全相同.從袋中隨機取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補一個白球放入袋中.重復上述過程次后,袋中白球的個數記為
.
(1)求隨機變量的概率分布及數學期望
;
(2)求隨機變量的數學期望
關于
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新冠肺炎疫情這只“黑天鵝”的出現,給經濟運行帶來明顯影響,住宿餐飲、文體娛樂、交通運輸、旅游等行業受疫情影響嚴重.隨著復工復產的有序推動,我市某西餐廳推出線上促銷活動:
A套餐(在下列食品中6選3)
西式面點:蔓越莓核桃包、南瓜芝土包、黑列巴、全麥吐司;
中式面點:豆包、桂花糕
B套餐:醬牛肉、老味燒雞熟食類組合.
復工復產后某一周兩種套餐的日銷售量(單位:份)如下:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
A套餐 | 11 | 12 | 14 | 18 | 22 | 19 | 23 |
B套餐 | 6 | 13 | 15 | 15 | 37 | 20 | 41 |
(1)根據上面一周的銷量,計算A套餐和B套餐的平均銷量和方差,并根據所得數據評價兩種套餐的銷售情況;
(2)若某顧客購買一份A套餐,求他所選的面點中至少一種中式面點的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(
為參數),直線
(
為參數,
),直線
與曲線
相切于點
,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程及點
的極坐標;
(2)曲線的直角坐標方程為
,直線
的極坐標方程為
,直線
與曲線
交于在
,
兩點,記
的面積為
,
的面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】算籌是在珠算發明以前我國獨創并且有效的計算工具,為我國古代數學的發展做出了很大貢獻.在算籌記數法中,以“縱式”和“橫式”兩種方式來表示數字,如下表:
數字形式 | |||||||||
縱式 | |||||||||
橫式 |
表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖所示.如果把根算籌以適當的方式全部放入下面的表格中,那么可以表示的三位數的個數為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com