設f(x)=|lg x|,a,b為實數,且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b滿足f(a)=f(b)=2f,
求證:a·b=1,>1.
科目:高中數學 來源: 題型:解答題
對于函數,若在定義域存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)設是定義在
上的“局部奇函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=lg(ax-bx)(a>1>b>0).
(1)求函數y=f(x)的定義域;
(2)在函數y=f(x)的圖象上是否存在不同的兩點,使過此兩點的直線平行于x軸;
(3)當a、b滿足什么關系時,f(x)在區間上恒取正值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=mx+3,g(x)=x2+2x+m.
(1)求證:函數f(x)-g(x)必有零點;
(2)設函數G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某企業擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的容積為立方米,且l≥2r.假設該容器的建造費用僅與其表面積有關,已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為c(c>3)千元.設該容器的建造費用為y千元.
①寫出y關于r的函數表達式,并求該函數的定義域;
②求該容器的建造費用最小時的r.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠的固定成本為3萬元,該工廠每生產100臺某產品的生產成本為1萬元,設生產該產品x(百臺),其總成本為g(x)萬元(總成本=固定成本+生產成本),并且銷售收人r(x)滿足假定該產品產銷平衡,根據上述統計規律求:
(1)要使工廠有盈利,產品數量x應控制在什么范圍?
(2)工廠生產多少臺產品時盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某鎮政府為了更好地服務于農民,派調查組到某村考察.據了解,該村有100戶農民,且都從事蔬菜種植,平均每戶的年收入為3萬元.為了調整產業結構,該鎮政府決定動員部分農民從事蔬菜加工.據估計,若能動員x(x>0)戶農民從事蔬菜加工,則剩下的繼續從事蔬菜種植的農民平均每戶的年收入有望提高2x%,而從事蔬菜加工的農民平均每戶的年收入將為3 (a>0)萬元.
(1)在動員x戶農民從事蔬菜加工后,要使從事蔬菜種植的農民的總年收入不低于動員前從事蔬菜種植的農民的總年收入,求x的取值范圍;
(2)在(1)的條件下,要使這100戶農民中從事蔬菜加工的農民的總年收入始終不高于從事蔬菜種植的農民的總年收入,求a的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com