精英家教網 > 高中數學 > 題目詳情

已知函數,.
(1)當時,求的最小值;
(2)若,求a的取值范圍.

(1)0;(2)(-∞,0).

解析試題分析:本題主要考查導數的計算、利用導數判斷函數的單調性、利用導數求函數的最值、恒成立問題等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,對求導,利用“單調遞增,單調遞減”判斷函數的單調性,確定函數最值的位置,并求出函數的最小值;第二問,先將已知不等式進行轉化,將所求的參數分離出來,構造新的函數,利用“單調遞增,單調遞減”判斷函數的單調性,確定函數最值的位置,并求出函數的最值,代入到所轉化的式子中即可.
試題解析:(1)當a=1時,f(x)=x2-lnxx,
x∈(0,1)時,f¢(x)<0;當x∈(1,+∞)時,f¢(x)>0.
所以f(x)的最小值為f(1)=0.          5分
(2)f(x)>x,即f(x)-xx2-lnx-(a+1)x>0.
由于x>0,所以f(x)>x等價于.      7分
,則
x∈(0,1)時,g¢(x)<0;當x∈(1,+∞)時,g¢(x)>0.
g(x)有最小值g(1)=1.
a+1<1,a的取值范圍是(-∞,0).       12分
考點:導數的計算、利用導數判斷函數的單調性、利用導數求函數的最值、恒成立問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)設函數,當時,討論的單調性;
(2)若函數處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數的圖象在處的切線與軸平行,求的值;
(2)若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數的定義域是,其中常數.
(1)若,求的過原點的切線方程.
(2)當時,求最大實數,使不等式恒成立.
(3)證明當時,對任何,有.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分15分)已知函數
(Ⅰ)若曲線在點處的切線與直線平行,求的值;
(Ⅱ)記,,且.求函數的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)若,試判斷并用定義證明函數的單調性;
(2)當時,求函數的最大值的表達式

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若函數在其定義域上為增函數,求的取值范圍;
(2)當時,函數在區間上存在極值,求的最大值.
(參考數值:自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若的極值點,求的極大值;
(2)求的范圍,使得恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

巳知函數,,其中.
(1)若是函數的極值點,求的值;
(2)若在區間上單調遞增,求的取值范圍;
(3)記,求證:.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视