精英家教網 > 高中數學 > 題目詳情
已知函數為偶函數.
(1)求的值;
(2)若方程有且只有一個根,求實數的取值范圍.
(1)-,(2){a|a>1或a=-2-2}

試題分析:(1)根據偶函數性質列等量關系:∵f(x)為偶函數,∴f(-x)=f(x),即log4(4-x+1)-kx=log4(4x+1)+kx,即(2k+1)x=0,∴k=-.(2)先將方程轉化為一元二次方程.由 得log4(4x+1)-x=log4 (a·2x-a),即令t=2x,則(1-a)t2+at+1=0,只需其有一正根即可滿足題意.①當a=1時,t=-1,不合題意,舍去.②有一正一負根, ,a>1. ③有兩根相等,a=-2(+1).
解:(1)∵f(x)為偶函數,∴f(-x)=f(x),
即log4(4-x+1)-kx=log4(4x+1)+kx,
即(2k+1)x=0,∴k=-.          6分
(2)依題意令log4(4x+1)-x=log4 (a·2x-a),
         8分
令t=2x,則(1-a)t2+at+1=0,只需其有一正根即可滿足題意.
①當a=1時,t=-1,不合題意,舍去.      9分
②上式有一正一負根t1,t2,
,得a>1.
此時,a·2x-a=>0, ∴a>1. ------11分
③上式有兩根相等,即Δ=0⇒a=±2-2,此時t=
若a=2(-1),則有t=<0,此時方程(1-a)t2+at+1=0無正根,
故a=2(-1)舍去;       13分
若a=-2(+1),則有t=>0,且a· 2x-a=a(t-1)=a>0,因此a=-2(+1).      15分
綜上所述,a的取值范圍為{a|a>1或a=-2-2}.          16分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數常數)滿足.
(1)求出的值,并就常數的不同取值討論函數奇偶性;
(2)若在區間上單調遞減,求的最小值;
(3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數數列,使得成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=lnx+a,其中a為大于零的常數.
(1)若函數f(x)在區間[1,+∞)內單調遞增,求實數a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時,都有lnn>++…+恒成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數為定義域上的單調函數,且存在區間(其中),使得當時,的取值范圍恰為,則稱函數上的正函數.若函數上的正函數,則實數的取值范圍為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若在曲線上兩個不同點處的切線重合,則稱這條切線為曲線的“自公切線”.下列方程:①;②;③;④對應的曲線中存在“自公切線”的有(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知集合A=[0,8],集合B=[0,4],則下列對應關系中,不能看作從A到B的映射的是________.(填寫序號)
①f:x→y=x     ②f:x→y=x      ③f:x→y=x     ④f:x→y=x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到1輛/小時).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數的定義域為,若函數滿足條件:存在,使上的值域是則稱為“倍縮函數”,若函數為“倍縮函數”,則的范圍是(    )
A.            B.                       D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知是定義在上的函數,且對任意實數,恒有,且的最大值為1,則不等式的解集為      .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视