精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.

1)寫出曲線的普通方程和直線的直角坐標方程;

2)若直線與曲線相交于、兩點,求的面積.

【答案】1,;(2.

【解析】

1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將直線的極坐標方程化簡為,由可將直線的極坐標方程化為直角坐標方程;

2)計算出圓心到直線的距離,利用勾股定理計算出,并計算出原點到直線的距離,進而利用三角形的面積公式可求得的面積.

1)由,得

故曲線的普通方程是.

,得,

,得,

代入公式.

故直線的直角坐標方程是;

2)因為原點到直線的距離為,

曲線表示圓心為,半徑的圓.

到直線的距離,所以.

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且,拋物線的通徑與橢圓的右通徑在同一直線上.

1)求橢圓與拋物線的標準方程;

2)過拋物線焦點且傾斜角為的直線與橢圓交于、兩點,為橢圓的左焦點,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線 ,直線與拋物線相交于兩點,且當傾斜角為的直線經過拋物線的焦點時,有.

(1)求拋物線的方程;

(2)已知圓,是否存在傾斜角不為的直線,使得線段被圓截成三等分?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態度,責成人社部進行調研.人社部從網上年齡在1565歲的人群中隨機調查100人,調査數據的頻率分布直方圖和支持“延遲退休”的人數與年齡的統計結果如下:

年齡

支持“延遲退休”的人數

15

5

15

28

17

(1)由以上統計數據填列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計

支持

不支持

總計

(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現從這8人中隨機抽2人

①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數為,求隨機變量的分布列及數學期望.

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)討論函數的單調性;

2)當時,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知半徑為的球面上有兩點,且,球心為,若是球面上的動點,且二面角的大小為,則四面體的外接球表面積為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幼兒園根據部分同年齡段的100名女童的身高數據繪制了頻率分布直方圖,其中身高的變化范圍是[96,106](單位:厘米),樣本數據分組為[96,98),[98,100),[100,102),[102,104)[104,106)

1)求出的值,并求樣本中女童的身高的眾數和中位數,平均數;

2)在身高在[100,102),[102,104),[104,106]的三組中,用分層抽樣的方法抽取14名女童,則身高數據在[104,106]的女童中應抽取多少人數?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖為我國數學家趙爽3世紀初在為《周髀算經》作注時驗證勾股定理的示意圖,現在提供5種顏色給其中5個小區域涂色,規定每個區域只涂一種顏色,相鄰區域顏色不同,則區域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,且,橢圓經過點.

1)求橢圓的方程;

2)直線過橢圓右頂點,交橢圓于另一點,點在直線上,且.,求直線的斜率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视