精英家教網 > 高中數學 > 題目詳情

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態度,責成人社部進行調研.人社部從網上年齡在1565歲的人群中隨機調查100人,調査數據的頻率分布直方圖和支持“延遲退休”的人數與年齡的統計結果如下:

年齡

支持“延遲退休”的人數

15

5

15

28

17

(1)由以上統計數據填列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計

支持

不支持

總計

(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現從這8人中隨機抽2人

①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數為,求隨機變量的分布列及數學期望.

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

【答案】(1)能(2)①②見解析

【解析】分析:(1)由統計數據填寫列聯表,計算觀測值,對照臨界值得出結論;
(2)①求抽到1人是45歲以下的概率,再求抽到1人是45歲以上的概率,
②根據題意知的可能取值,計算對應的概率值,寫出隨機變量的分布列,計算數學期望值.

詳解:(1)由頻率分布直方圖知45歲以下與45歲以上各50人,故填充列聯表如下:

45歲以下

45歲以上

總計

支持

35

45

80

不支持

15

5

20

總計

50

50

100

因為的觀測值

所以在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異.

(2)①抽到1人是45歲以下的概率為,抽到1人是45歲以下且另一人是45歲以上的概率為,故所求概率.

②從不支持“延遲退休”的人中抽取8人,則45歲以下的應抽6人,45歲以上的應抽2人.所以的可能取值為0,1,2.

,,.

故隨機變量的分布列為:

0

1

2

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論的單調性;

2)若函數上有且只有一個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,拋物線的焦點為F1,0),E是拋物線的準線與x軸的交點,直線AB經過焦點F且與拋物線交于A,B兩點,直線AE,BE分別交y軸于M,N兩點,記,的面積分別為

1)求拋物線C的標準方程;

2是否為定值?若是,求出該定值;若不是,請說明理由;

3)求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求函數在點處的切線方程.

2)若對任意的恒成立,求的值.

3)在(2)的條件下,記,證明:存在唯一的極大值點,且

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為2.

1)求拋物線的方程;

2)若過點作互相垂直的兩條直線,,與拋物線交于,兩點,與拋物線交于,兩點,分別為弦,的中點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.

1)寫出曲線的普通方程和直線的直角坐標方程;

2)若直線與曲線相交于、兩點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為2.

1)求拋物線的方程;

2)若過點作互相垂直的兩條直線,與拋物線交于,兩點,與拋物線交于,兩點,分別為弦,的中點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國式過馬路存在很大的交通安全隱患,某調查機構為了解路人對中國式過馬路的態度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如圖的列聯表.已知在這30人中隨機抽取1人抽到反感中國式過馬路的路人的概率是

1)求列聯表中的,的值;

男性

女性

合計

反感

10

不反感

8

合計

30

2)根據列聯表中的數據,判斷是否有95%把握認為反感中國式過馬路與性別有關?

臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

參考公式:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视