精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

1)當時,求函數在點處的切線方程.

2)若對任意的恒成立,求的值.

3)在(2)的條件下,記,證明:存在唯一的極大值點,且

【答案】1;(2)實數的值為;(3)證明見解析.

【解析】

1)利用導數的幾何意義求得切線的方程;

2)等價轉化為對任意的恒成立,令,求得,按照,,分類討論,利用導數研究函數的單調性,并注意,得到實數的值;

3)求得,令,利用導數研究單調性和最值,并根據零點存在定得到存在唯一的實數,使得,進而分析單調性,

的唯一極大值點.,可得到,

利用的范圍和二次函數的性質可以證明最后的結論.

1)∵,∴

時,,,

切線方程為:,;

2的定義域為,對任意的恒成立,等價于

,對任意的恒成立,

,,

時,在, 單調遞減,在,單調遞增,

恒成立,符合題意;

時,在, 單調遞增,

注意到,故,不合題意;

時,在,單調遞減,

,不合題意,

綜上所述,,所以實數的值為.

3,

,則,

上,,單調遞減,在上,單調遞增,

,又∵,

∴存在唯一的實數,使得,

在內,單調遞增,在,單調遞減,在在內,單調遞增,

的唯一極大值點.

,

由于,,證明完畢.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】“干支紀年法”是中國歷法自古以來就使用的紀年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸為十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥為十二地支.“干支紀年法”是以一個天干和一個地支按上述順序相配排列起來,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此類推,則2080年是____________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶某村戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標.將指標按照,,分成五組,得到如圖所示的頻率分布直方圖.規定若,則認定該戶為絕對貧困戶,否則認定該戶為相對貧困戶;當時,認定該戶為亟待幫住戶”.工作組又對這戶家庭的受教育水平進行評測,家庭受教育水平記為良好不好兩種.

1)完成下面的列聯表,并判斷是否有的把握認為絕對貧困戶數與受教育水平不好有關:

受教育水平良好

受教育水平不好

總計

絕對貧困戶

相對貧困戶

總計

2)上級部門為了調查這個村的特困戶分布情況,在貧困指標處于的貧困戶中,隨機選取兩戶,用表示所選兩戶中亟待幫助戶的戶數,求的分布列和數學期望.

附:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三個校區分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區鋪設三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.

(1)將y表示成θ的函數,并寫出θ的范圍;

(2)請確定工作坑P的位置,使地下電纜管線的總長度最小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線 ,直線與拋物線相交于兩點,且當傾斜角為的直線經過拋物線的焦點時,有.

(1)求拋物線的方程;

(2)已知圓,是否存在傾斜角不為的直線,使得線段被圓截成三等分?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,圓經過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態度,責成人社部進行調研.人社部從網上年齡在1565歲的人群中隨機調查100人,調査數據的頻率分布直方圖和支持“延遲退休”的人數與年齡的統計結果如下:

年齡

支持“延遲退休”的人數

15

5

15

28

17

(1)由以上統計數據填列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計

支持

不支持

總計

(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現從這8人中隨機抽2人

①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數為,求隨機變量的分布列及數學期望.

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知半徑為的球面上有兩點,且,球心為,若是球面上的動點,且二面角的大小為,則四面體的外接球表面積為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知常數,函數.

(1)討論在區間上的單調性;

(2)存在兩個極值點,,的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视