已知兩點及
,點
在以
、
為焦點的橢圓
上,且
、
、
構成等差數列.
(1)求橢圓的方程;
(2)如圖,動直線與橢圓
有且僅有一個公共點,點
是直線上的兩點,且
,
. 求四邊形
面積
的最大值.
科目:高中數學 來源: 題型:解答題
已知定圓的圓心為
,動圓
過點
,且和圓
相切,動圓的圓心
的軌跡記為
.
(Ⅰ)求曲線的方程;
(Ⅱ)若點為曲線
上一點,試探究直線:
與曲線
是否存在交點? 若存在,求出交點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
平面直角坐標系xOy中,過橢圓M:右焦點的直線
交
于A,B兩點,P為AB的中點,且OP的斜率為
.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的焦距為
,離心率為
,其右焦點為
,過點
作直線交橢圓于另一點
.
(Ⅰ)若,求
外接圓的方程;
(Ⅱ)若直線與橢圓
相交于兩點
、
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系曲線C的極坐標方程為cos()=1,M,N分別為C與x軸,y軸的交點。
(I)寫出C的直角坐標方程,并求M,N的極坐標;
(II)設MN的中點為P,求直線OP的極坐標方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,圓與離心率為
的橢圓
(
)相切于點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點引兩條互相垂直的兩直線
、
與兩曲線分別交于點
、
與點
、
(均不重合).
(ⅰ)若為橢圓上任一點,記點
到兩直線的距離分別為
、
,求
的最大值;
(ⅱ)若,求
與
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上.若橢圓上的點
到焦點
、
的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標;
(2)過點的直線與橢圓交于兩點
、
,當
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com