已知橢圓:
的焦距為
,離心率為
,其右焦點為
,過點
作直線交橢圓于另一點
.
(Ⅰ)若,求
外接圓的方程;
(Ⅱ)若直線與橢圓
相交于兩點
、
,且
,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,且過點
.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線
與橢圓相交于不同的兩點
,試問在
軸上是否存在點
,使
是與
無關的常數?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在正方形中,
為坐標原點,點
的坐標為
,點
的坐標為
,分別將線段
和
十等分,分點分別記為
和
,連接
,過
作
軸的垂線與
交于點
。
(Ⅰ)求證:點都在同一條拋物線上,并求拋物線
的方程;
(Ⅱ)過點作直線
與拋物線E交于不同的兩點
, 若
與
的面積之比為4:1,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩點及
,點
在以
、
為焦點的橢圓
上,且
、
、
構成等差數列.
(1)求橢圓的方程;
(2)如圖,動直線與橢圓
有且僅有一個公共點,點
是直線上的兩點,且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左、右焦點分別是
,Q是橢圓外的動點,滿足
.點
是線段
與該橢圓的交點,點T是
的中點.
(Ⅰ)設為點
的橫坐標,證明
;
(Ⅱ)求點T的軌跡的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓的右焦點為
,直線
與
軸交于點
,若
(其中
為坐標原點).
(I)求橢圓的方程;
(II)設是橢圓
上的任意一點,
為圓
的任意一條直徑(
、
為直徑的兩個端點),求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com