(本題12分)如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交B1C于點F,
⑵ 證:平面A1CB⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。
由正四棱柱得BDAC,BD
AA1,推出BD
面A1 AC ,A1C
BD ,又A1B1
面BB1 C1C,BE得到BE
A1B1,又BE
B1C, BE
面A1B1C,平面A1CB⊥平面BDE;;
⑵
解析試題分析:
正四棱柱得BDAC,BD
AA1,又
,
BD
面A1 AC ,又A1 C
面A1 AC,
A1C
BD ,又A1B1
面BB1 C1C,BE
面BB1 C1C,
BE
A1B1,又BE
B1C,
BE
面A1B1C,A1 C
面A1B1C,
BE
A1 C,又
,
A1 C
面BDE,又A1 C
面A1BC
平面A1CB⊥平面BDE;
⑵以DA、DC、DD1分別為x、y、z軸,建立坐標系,則,
,
,
∴,
∴,設A1C
平面BDE=K,由⑴可知,∠A1BK為A1B與平面BDE所成角,∴
考點:本題主要考查立體幾何中的平行關系、垂直關系,角的計算。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題通過建立空間直角坐標系,利用向量的坐標運算,簡化了證明過程。
科目:高中數學 來源: 題型:解答題
如圖,三棱柱ABC—A1B1C1的側棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中點,F是AB中點,AC = 1,BC = 2,AA1 = 4.
(1)求證:CF∥平面AEB1;(2)求三棱錐C-AB1E的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側面積S.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖,沿等腰直角三角形的中位線
,將平面
折起,平面
⊥平面
,得到四棱錐
,
,設
、
的中點分別為
、
,
(1)求證:平面⊥平面
(2)求證:
(3)求平面與平面
所成銳二面角的余弦值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com