精英家教網 > 高中數學 > 題目詳情

如圖,三棱柱ABC—A1B1C1的側棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中點,F是AB中點,AC = 1,BC = 2,AA1 = 4.

(1)求證:CF∥平面AEB1;(2)求三棱錐C-AB1E的體積.

(1)詳見試題解析;(2)

解析試題分析:(1)根據直線平行平面的判定定理,需要在平面AEB1內找一條與CF平行的直線.根據題設,可取的中點,通過證明四邊形是平行四邊形來證明,從而使問題得證.
(2)由題易得,即,就是三棱錐的高
所以求三棱錐的體積可轉化為求三棱錐的體積.
試題解析:(1)證明:取的中點,聯結
分別是棱、的中點,

又∵
∴四邊形是平行四邊形,

平面平面
平面
(2)解: 因為底面,所以底面,
,所以 
所以,即
所以點到平面的距離為 
又因為平面,所以點到平面的距離等于點到平面的距離,即為2
所以.
考點:1、直線與平面平等的判定;2、直線與平面垂直的性質;3、空間幾何體的體積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖在長方體中,,,,點的中點,點的中點.

(1)求長方體的體積;
(2)若,,,求異面直線所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四邊形均為菱形,設相交于點,若,且.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四面體中,,點,分別是的中點.

(1)EF∥平面ACD;
(2)求證:平面⊥平面;
(3)若平面⊥平面,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,在直三棱柱中,,的中點.

(Ⅰ) 若AC1⊥平面A1BD,求證:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的條件下,設AB=1,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,是矩形邊上的點,邊的中點,,現將沿邊折至位置,且平面平面.
⑴ 求證:平面平面
⑵ 求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知四棱錐的底面為直角梯形,,底面,且,的中點。

(Ⅰ)證明:面;
(Ⅱ)求所成的角;
(Ⅲ)求面與面所成二面角的大小。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知簡單幾何體的三視圖如圖所示

求該幾何體的體積和表面積。
附:    分別為上、下底面積

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交B1C于點F,
⑵    證:平面A1CB⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视